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Abstract

We propose a complete framework for data-driven difference-in-differences analysis
with covariates, in particular nonparametric estimation and testing. We start with
simultaneously choosing confounders and a scale of the outcome along identification
conditions. We estimate first heterogeneous treatment effects stratified along the covari-
ates, then the average effect(s) for the treated. We provide the asymptotic and finite
sample behavior of our estimators and tests, bootstrap procedures for their standard
errors and p-values, and an automatic bandwidth choice. The pertinence of our methods
is shown with a study of the impact of the Deferred Action for Childhood Arrivals
program on educational outcomes for non-citizen immigrants in the US.

1 Introduction
Arguably the most popular estimation technique to study treatment effects in a Rubin-
Causal-Model (Holland, 1986) is the so-called difference-in-differences (DiD) approach.
Today, the literature on this and related approaches is quite abundant.1 As with many
methods for studying causality, it originates from biometrics, in this case it is attributed
to the epidemiologist John Snow (*1813–†1858) who applied DiD for finding the cause of
the cholera outbreak of 1854 in London. In economics it was made popular by Card and
Krueger (1992) who employed this method for studying the causal effect of a minimum
wage rise in New Jersey (of almost 20%) in 1992, comparing the developments of the labor

1For example, change-in-changes by Athey and Imbens (2006) shifts the problem from mean to quan-
tile regression which has many advantages like scale-independence, but is less popular due to practical
complications.
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markets of New Jersey and Pennsylvania, concentrating on the low-income sector (we call
such intervention or similar event a ‘treatment’).

In our opinion, the most intensive and extensive discussion on this topic was provided
by (Lechner, 2011). He showed that the basic concept for identifying the causal effect via
DiD applies to more complex situations than previously considered. In this article we limit
our considerations to the case of a single treatment and two groups (treatment group, D = 1
and control group, D = 0); extensions as discussed by him work in principle the same way.

The DiD concept is feasible when a panel or repeated cross-sections of observations of
individuals are provided both before and after an intervention has taken place. Although
more often studied for panels, we outline all methods first for the more general case of
repeated cross-sections (cohorts); but we show afterwards that the methods apply equally
well to balanced panels and actually give much more simplified statistics and asymptotics.
Notice that in its basic form, i.e., without imposing further non-testable assumptions, the
DiD approach identifies the treatment effect on the treated. The primary assumption behind
this identification is that without such intervention (i.e., the treatment), the outcome of
interest Y experienced in both groups (treated and control group) would have developed
‘similarly’ over time, where ‘similarly’ for mean-regression refers to ‘in-the-mean’ but in
quantile regression (change-in-changes) refers to the quantiles. This is also known as the
‘common trend’ or ‘parallel path’ condition. This insinuates that there had been only a
constant difference between the two groups without the treatment under consideration.

Often it is unlikely that this difference is independent of other factors like age distribution
or infrastructure. The fear is that, for instance, differences in age structure predict different
developments of Y , or that certain infrastructure changes impact, while neither originate
from treatment itself. In the former case you can think of an interaction between a (pre-
)condition and time, and in the latter of an exogenous change of conditions over time.
These fears can be mitigated by proper conditioning, say by including confounders X.
While for identification a common trend, conditional or unconditional, is only required
for a given period around treatment, it seems reasonable to assume that this should also
hold for the period(s) before the intervention. The same could be said about periods after
treatment only if the treatment simply shifts the development of Y |X by a constant (an
unnecessary assumption). Again, as in practice we typically look at means (or say, are
interested in average treatment effects), all statements about the development of Y or
its conditional version Y |X refer simply to the mean. If we are interested in changes in
higher-order moments like variance, skewness or kurtosis, we would either directly compare
the entire distributions of both groups before and after the treatment or estimate these
higher moments. As for the latter, the general procedure and ideas remain basically the
same; we concentrate here on the estimation of the average treatment effect on the treated.
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1.1 Central Equation

For the considerations above, we focus on the DiD of conditional means

{E[Yt|x, d1] − E[Yt|x, d0]} − {E[Yt−1|x, d1] − E[Yt−1|x, d0]}, (1.1)

where we define E[Ys|x, d] := E[Ys|Xs = x, Ds = d] for the outcome Y in time s, given
conditions x, and belonging to treatment group d. In the literature you may see different
notations and orders of terms (taking first the differences inside the same groups and
afterwards between). The idea is usually to condition the expectation of Y on the set of
confounders X and treatment status D in period s. For simplicity we consider d ∈ {0, 1},
i.e., treatment group (d = 1) and control group (d = 0).

When treatment takes place between periods t − 1 and t, expression (1.1) gives the
conditional treatment effect on the treated from which we can obtain average effects.
Identification of a causal impact of treatment on Y is based on the assumption that without
treatment, (1.1) had been zero almost surely for all x of the common support defined below
(Section 2.1.1). To identify a causal effect, we work with a scale for Y and a set of covariates
X such that (1.1) is zero (noting that both choices have consequences for interpretation).
Using this statistic can turn a bane into a boon: while it may be difficult to convince others
that this assumption is fulfilled, an appropriate statistic can guide you data-adaptively.

For simplicity, we will mostly assume we have data on three time periods t = −1, 0
and 1 and consider the case where the treatment occurs between periods 0 and 1. Given
that we have data in an additional period to treatment (t = −1), we can check if (1.1)
is zero for a given X prior to treatment (the development between t = −1 and t = 0).
We emphasize that while this is not the (non-testable) identification condition needed, it
empirically supports its credibility.

The DiD expression (1.1) is far more useful than being used to estimate an average
treatment effect on the treated (TT). We study its estimation, including heterogeneous
TT, its sample average (i.e., the average TT itself), and the analogue of its squares (i.e.,
test statistics). In each case, we study the asymptotic and finite sample properties. In
practice, it is likely preferable to rely on bootstrap methods than on estimates of complex
asymptotics, but the latter help to better understand the performance of the statistics.
For approximating the p-value of the tests that we will introduce, a challenge is to find
procedures that generate data under the null hypothesis.

1.2 What Does it Mean to be Model-Free?

Without covariates, the nonparametric TT estimator reduces to the classic DiD estimator
which simply subtracts averages of the observed Y . In this situation, the four means can be
estimated without a statistical model; the only model we use is the causality model (i.e.,
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the supposition that the difference of differences would identify the TT). However, when
including covariates, which is unavoidable in the presence of confounders, the specification
of the mean functions matters. This is also true if we are only interested in the average
(over all x) of (1.1) (see also Meyer (1995) for more discussion). Then, in order to avoid
a bias due to misspecification, we would prefer avoiding the specification of a statistical
model for the mean functions, and use nonparametric estimation instead.2 The only model
we use is the causality model (i.e., the supposition that (1.1) would identify the causal
effect). Our procedure is certainly not model-free regarding the causality model; we are only
model-free regarding the estimation of (1.1). This way of thinking is somewhat different
from the classical econometrics literature on identification as there the identification was
largely or fully interwoven with the parametric specification of the structural equations.
Here we distinguish between the causality model for identification, and the statistical
model for estimation and testing. When the latter is done nonparametrically, we speak
of nonparametric identification of causality since it does not depend on the parametric
specification.

Nonparametric estimation is often avoided for fear of the curse of dimensionality, its
interpretation, implementation or the complex inference (like non-standard calculus of
standard errors and p-values). Although the provision of user-friendly software has improved
a lot, it is true that in many situations the latter can still be the bottleneck. This is why in
this article we also describe the implementation, explain and provide our R-code, and discuss
issues the practitioner is confronted with. Interpretation will become more involved when
exploring heterogeneity of the treatment effects along several covariates simultaneously.
Lastly, while the curse of dimensionality can be real, in many situations, it is not an issue.
For example, in the presence of only discrete regressors, Ouyang et al. (2009) show that the
nonparametric conditional expectation estimator is estimated at the parametric (i.e., root-n)
rate without asymptotic bias. Unless the number of variables increases with the sample size
(and then it is also an issue for parametric estimation), only continuous confounders count
for the curse. If the unconditional treatment effect is of interest, you need to have more
than three continuous variables to be affected asymptotically. Even then, imposing higher
smoothness conditions allows for bias reduction such that we end up with the parametric
rate again.3

In practice, many variables can be discrete, and many continuous variables are measured
or recorded discretely (e.g., years of education). For this reason it is often argued in the

2In the econometrics literature, Heckman et al. (1997) were perhaps the first who mentioned the non- or
semiparametric extension of DiD to include covariates.

3Even though this is standard practice in econometric theory, one may criticize that these conditions
impose non-testable restrictions. However, they simply exclude discontinuities in derivatives of higher-orders,
and it is not clear to what extent a potential oversmoothing of them would affect the final estimates. In any
case, those smoothness conditions are far milder than any parametric approach would require.
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applied economics literature that parametric methods would be sufficient almost always,
as we could construct a saturated model. We will later discuss why this is rarely the
case (Section B.1). Therefore we argue that if most applications contain a continuous
covariate or discrete ones with many values, nonparametric methods are the better option
for causal analysis in most cases. In fact, nonparametric regression is at least as reasonable
as a parametric one even when all confounders are discretely measured. Moreover, in our
application we show that this also holds true computationally. We should mention here
that it is relatively straightforward to employ parametric or semiparametric versions of
our methods if desired. However, those strict parametric assumptions may or may not be
justified by prior knowledge like economic theory, and a misspecification of functional forms
easily leads to biased and inconsistent estimates.

As said, we are not much concerned about a potential curse of dimensionality (see also
Section B.1) because the case of facing mainly (or only) discrete regressors is indeed quite
common in economics. For example, solely looking at the American Economic Journal:
Applied Economics, examples include Ang (2019), who looks at the impact of the Supreme
Court in 2013 striking down parts of the Voting Rights Act on long-run voter turnout. His
model regresses voter turnout (a continuous variable) on year indicators interacted with
treatment group dummies, county and state-by-year fixed-effects as well as a dummy for
elections that were subject to bilingual requirements in a given year. Panhans (2019) looks
for adverse selection in the Affordable Care Act health insurance exchanges. A supplemental
section of his paper uses DiD with a set of fixed effects which are not exhaustive and hence
are not identical to nonparametric estimates. McKenzie et al. (2014) look at migration
patterns of Filipinos when there is a binding minimum wage change in the country of origin.
They use a host of fixed effects and an indicator for whether or not the individual was a
domestic helper. Jayachandran et al. (2010) use a host of specifications solely with discrete
right-hand-side variables to study the impact of surfa drugs on mortality rates. Regarding
our data analysis, Kuka et al. (2020) examine human capital responses to the availability
of the Deferred Action for Childhood Arrivals (DACA) program. In addition to having all
binary right-hand-side variables (some are discrete information transformed to dummies),
their outcome variables are binary. Nonetheless, as authors usually have a mix of discrete
and continuous variables, we consider this rather general setting, and argue that empirical
researchers should be more concerned about systematic biases and inconsistency due to
model specification than potential issues with model-free estimation.

1.3 Structure of the Article

The plan is to introduce a complete framework for model-free DiD based causal analysis
under the potential presence of confounders. To do so we start by presenting a data-driven
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procedure to find an appropriate scale of Y with a set of confounders compounded in a
vector X that (both together) prove to have some credibility to identify the treatment
effects via the ‘parallel path’. As this cannot be done for the period of interest itself, we
will study the parallel path for previous periods (i.e., not the actual assumption but an
indicator for its plausibility). Then we estimate the identified effects on the treated. The
procedure is concluded by the introduction of nonparametric tests for significant treatment
effects. Modified versions of the simultaneous test for significance of conditional effects can
be used for testing heterogeneity of effects or the credibility of identification assumptions.

The next section will provide the analytical developments with technical details which
are afterwards completed by simulations. These show the usefulness of all methods even
for moderate and small samples. As it is uncommon for nonparametric estimators to be
estimated at parametric rates,4 it is particularly interesting to see their performance with
very small samples. We will see that, a bit surprisingly, the performance of our scale and
covariate selector, our estimators and tests are admirable, even in these small sample settings.
The simulations will be followed by the various issues in practice, namely the discussion
of implementation, bandwidth choice, details on bootstrap procedures, presentation of R
functions, and further miscellaneous.

To highlight usefulness and relevance of our approach, we re-examine the results of
Kuka et al. (2020) in the last section. We find mixed evidence that their set of confounders
satisfy the ‘parallel path’ assumption. Regarding their treatment effect estimates, their
models underestimate the positive impact that DACA had on the rate at which 14-18 year
old students stayed in school and the positive impact of DACA on high school completion
(either via graduation or obtaining a GED). Moreover, they fail to identify the negative
impact of DACA on school attendance of college aged individuals (19-22). With respect to
enrolling in college, we can confirm that these effects are insignificant.

Beyond the replication, we also look at hetereogeneity in treatment effects. For example,
we find that DACA had a positive and significant impact on the rate at which 14-18 year
old male students stayed in school, but an insignificant impact on female students. We
also find significant effects only for Hispanic, Black and White students. The impact also
increased by age. There was no economically or statistically significant impact for 14 or 15
year olds, but statistically significant and monotonically increasing impacts with age for
16, 17 and 18 year olds. We conclude our application by stating that there are far more
questions that should be addressed in this literature beyond an average treatment effect on
the treated.

We conclude this introduction with a remark on a recently much discussed inference
problem. You could ask about post-selection (or pretesting) inference as we propose a

4The logic here is similar to that for (kernel estimated) average derivative estimators (Härdle and Stoker,
1989).
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procedure that allows you to select between different covariates and scales of Y , or to test
for bias stability before treatment started. However, our problem differs from the post-
selection inference typically considered (cf. Rolling and Yang (2014) for the treatment effect
estimation context and Kuchibhotla et al. (2022) for a general recent review). Intuitively,
Taylor and Tibshirani (2015) describe the standard problem as follows: “Having mined
a set of data to find potential associations, how do we properly assess the strength of
these associations? The fact that we have cherry-picked, i.e., searched for the strongest
associations means that we must set a higher bar for declaring significant the associations
that we see.”

Our criterion is not the covariates contribution to a regression, but the maximization of
bias stability (i.e., checking the identifying assumptions necessary for causal conclusions).
However, as this is infeasible for the period of interest, it has to be done for a prior period.
That is, there is no cherry-picking for significance or finding the strongest treatment effect;
we rather try to maximize the conditional independence. Moreover, doing this for periods
prior to the one of interest suggests that we apply a strategy similar to sample splitting.
Notice also that standard literature on post-selection inference recommends to condition
on the applied pretests (calling it selective inference), whereas the literature related to our
context advises against such conditioning (Roth, 2022).

2 Model-Free Approach

Our main contribution is the provision of a complete framework for DiD-based causal
analysis. As already indicated, the literature on DiD estimation is abundant; when we cite
some of the existing econometric literature we limit us mostly to contributions which provide
methods with its corresponding asymptotic theory. For a general discussion, recalling ideas,
definitions and assumptions of DiD with confounders we refer to Frölich and Sperlich (2019)
and Lechner (2011).

For a linear parametric DiD with confounders we would like to recommend Sant’Anna
and Zhao (2020) who consider a so-called double robust version (i.e., using propensity score
weighting and regression). This is not to be confused with double machine learning or
double debiased methods as these are completely different concepts, both designed to tackle
problems we don’t have. In a fully parametric context, the so-called double robust estimator
provides a consistent estimator of the treatment effect if either the propensity score or the
regression function is correctly specified. In nonparametric estimation, both are ‘correctly
specified’, and it is not clear if doing both would result in an improvement in practice. It is
possible that for some nonparametric estimators (e.g., series estimators), the approximation
bias could be substantial (this is why we suggest kernels). In that case mixing propensity
score weighting and matching could perhaps result in an improvement. Kennedy et al.
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(2017) introduced a special nonparametric doubly robust matching estimator for continuous
treatment whose extension to DiD might be interesting. However, we are unaware of papers
supporting the guess that double robust estimators are more efficient when propensity score
and regression function are poorly approximated. We therefore primarily focus our attention
on the regression setting.

2.1 Nonparametric Difference-in-Differences with Confounders

Assuming that two groups have an unconditional common trend in their responses over a
certain period of time might be too strong of a restriction. Abadie (2005) and Qin and Zhang
(2008) proposed DiD with nonparametric and semiparametric propensity score weighting,
respectively. More recently, Chan et al. (2016) proposed a more general weighting scheme for
matching, but not explicitly for the DiD estimator. We will see below, for propensity score
weighting, the asymptotics for DiD estimation based on nonparametric matching follows
from the asymptotics of nonparametric matching without the second difference. As has been
discussed in many papers, there is no general superiority of propensity score weighting over
matching, and therefore there isn’t one for the DiD context either.1 We stick to the latter
(i.e., a DiD regression approach) for different reasons: the first is that practitioners relate
conditional treatment effects rather to regression than weighting. Further, we also avoid
numerical problems that occur when dividing by nonparametric estimates of potentially
small propensities which is a nontrivial advantage in practice. Finally, we prefer not to
jump between nonparametric propensity estimation and nonparametric regression. The last
point is linked to the inclusion of further covariates.

More specifically, one may also be interested in exploring potential heterogeneity of
effects beyond confounders. Recall that confounders are only those variables that partly
predict both D and Y . We can obviously regress on those additional covariates (subsumed
in X together with the confounders), and may find that (1.1) varies over them; in such
a case we call them solely effect modifiers. In contrast, conditional on the confounders,
the propensity score does not exhibit variation over solely effect modifiers. In other words,
propensity score weighting alone would not be sufficient to explore effect heterogeneity over
effect modifiers that are not confounders.2 For simplicity, we will not treat here confounders
differently from those solely effect modifiers; see Benini and Sperlich (2022) for an explicit

1Some papers stated the superiority of propensity score weighting as it would avoid the curse of
dimensionality since one could estimate the propensity quite well with parametric methods. However, as we
divide by its estimates, any error has a leverage effect giving huge errors for the treatment effect estimator
even if the error in the propensity estimate was small (Drake, 1993). People have tried to steadily improve
on the propensity score estimator, more recently by using machine learning methods (McCaffrey et al., 2004;
Lee et al., 2010).

2You also may have variables that impact the propensity score but have no further impact on Y . Those,
however, you typically do not want to include.
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separated modeling approach. In some literature, those additional covariates are called
moderators; others define moderators in a way that includes confounders, and may call
our X the vector of moderators. For matching, Heckman et al. (1997) suggest in their
Section 4 to put all confounders in the propensity score, the solely effect modifiers in the
regression, and then mix propensity score weighting and regression (not to be mixed up
with double robust regression which puts the entire X everywhere). We could construct
something similar for nonparametric DiD estimation, but do not see any gain in this, rather
the risk of confusion.

As Frölich and Sperlich (2019) discuss, there are further reasons you might want to
condition on certain covariates. One is to measure a direct or a partial impact of D on Y ,
controlling for certain covariates that are impacted by D; another is to include covariates
that are not impacted by D, but have predictive power for Y . Their inclusion can improve
the statistical analysis by reducing noise. Which covariates to include is seemingly the
researcher’s choice, but this has implications for both interpretation and assumptions. As
we condition on both, confounders and additional covariates, we will henceforth speak of
‘covariates’ in general. Different from most of the existing econometrics literature, we allow
these covariates X to vary over time. Further, we use notation appropriate for cohorts in
which t stands for the indicator of the time period when the observation is made. Where
appropriate, we will discuss the much simpler case of balanced panel data explicitly.

2.1.1 Difference-in-Differences with Covariates

Before estimating the treatment effects, we should have a closer look at the identification
conditions. We want to include a set of covariates X, and need to know the scale of Y , such
that stochastically speaking, both the parallel path and a common support condition hold.
As we need to assume the common trend for the period in which the treatment takes place,
we have to introduce the notion of ‘potential outcomes’ for Y , where Y d represents the
response that would be obtained if treatment D = d had taken place. We further need to
define the domain X ⊂ supp(X) which is implicitly determined by the so-called common
support condition (CSC) which says that

CSC P (T = 1 ∩ D = 1|X = x, (T, D) ∈ {(t, d), (1, 1)}) > 0
∀x ∈ X , ∀(t, d) ∈ {(0, 0), (1, 0), (0, 1)}

where for the sake of notation, time T is dealt with like a random variable. To be specific,
CSC says that domain X contains only values of X that can be found in each group in each
time period. There should be no value in X whereby we cannot find a counterfactual match.

At first glance, our CSC seems to be more restrictive than other common support
conditions given in the literature. This, however, is not the case. It typically collapses to a
specific case. This somewhat cumbersome notation has been chosen to allow for unbalanced
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panels and cohorts. While we will define these more formally after Equation (2.3), we may
be interested in the average treatment effect on the treated for the treatment group in time
period 1 (TTa) or the average treatment effect on the treated for the treatment group in
time periods 0 and 1 (TTb).3 The domain X does not change over time. It is only related to
the fact that we allow for time-varying covariates in the following sense: the CSC we wish
to have for estimating TTa , say Xa, contains exactly all x-values observed in the treatment
group at t = 1, whereas its counterpart Xb would in addition contain all x-values observed
in the treatment cohort at t = 0.

The CSC says little about the underlying distribution of X within each group in each
time period. For the confounders these are actually supposed to be different between the
treatment and control groups. Generally, one should interpret CSC neither as a restriction
nor as an assumption; it simply defines the domain for which you can identify counterfactual
treatment effects. The population of interest is then to be (re-)defined such that its support
of X is in domain X . For the ease of presentation we will consider as our populations of
interest those represented by the people that are in the treatment group (for instance at time
point t = 1 for TTa); or we condition on a specific x ∈ X when the conditional effect TTx

is of interest. Since in Section 3.1.3 we extend our method to data with sampling weights,
you can calculate the average treatment effects for many different (treated) populations by
applying weights that correspond to their distributions. All you need is that the support of
X is in domain X .

Specifically, for identification of the counterfactual treatment effect of the treated (TT),
we need

Assumption I For all x ∈ X the difference in potential outcomes under no treatment
(Y 0) between the treatment and control group is the same before and after treatment:

E
[
Y 0

t=1|x, 1
]

− E
[
Y 0

t=1|x, 0
]

= E
[
Y 0

t=0|x, 1
]

− E
[
Y 0

t=0|x, 0
]

, (2.1)

recall expression (1.1) with the explicit definition of our conditional expectations. We would
like to emphasize that we condition here, in (1.1) and also in the following, on Xs = x

with s corresponding to the respective time index of Y 0, where x are from support X
defined via our CSC above. This implies that identification does not hinge on the potential
time-variance of X. The difference to identification conditions you typically find in the
literature, lies in (i) that we allow for time-varying confounders and (ii) for other moderators,
consequently have (iii) more general conditional expectations in (1.1) and (2.1), and (iv)
need a more restrictive CSC when estimating TTb (or TTx outside of Xa).

3Certainly, both cohorts are expected to be taken from the same population, but their observed values x
need not be the same in practice as the distribution of X may change over time. If this is true, T Ta and
T Tb have a slightly different interpretations (as in stochastic terms this means the population has changed
over time).
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We are no longer looking for a parallel path of the potential outcomes Y 0, but of Y 0|x,
an important distinction when switching from unconditional to conditional DiD. Moreover,
(2.1) highlights the link to matching estimators based on a conditional comparison of
treatment versus control groups after treatment (t = 1). In the matching setting, we assume
that the vector X accounts for all differences in Y 0 such that the left-hand-side of (2.1) is
zero, but if not, its average over all x is the bias of the well-known TT matching estimator. In
the DiD setting we only assume that this difference is the same before treatment, suggesting
that we can use pre-treatment data for bias correction. Therefore, calling Assumption I
‘bias stability’ is perhaps more appropriate as it does not deceptively insinuate a parallel
path of Y 0.

We also must be concerned about spillover effects (Lechner, 2011). It is feasible that the
outcome of a particular individual is affected by not only their treatment status, but also
the treatment status of other individuals. To avoid this possibility of spillover or general
equilibrium effects we must employ the stable unit treatment value assumption (SUTVA).
This assumption states that the observed outcome of an individual only depends upon
the treatment status of that individual and not the allocation of other individuals (Rubin,
1977). This assumption is potentially violated if individuals interact directly or indirectly.

Assumption I is the usual ‘non-testable identification condition’. However, as said earlier,
it is not very credible if it does not hold (shortly) before treatment as well. Consequently,
we could apply this assumption to periods prior to treatment (t = −1 and 0) and use data
from those periods to evaluate its credibility, which is feasible because for t < 1, Y 0

t = Yt.
For simplifying the notation further, denote the conditional expectations for each year

and treatment group by

mdt(x) = E[Y |X = x, D = d] , d = 0, 1, t = −1, 0, 1 . (2.2)

Obviously, under Assumption I, SUTVA and CSC, the conditional TT for a given x is
identified by

TT x = {m11(x) − m01(x)} − {m10(x) − m00(x)}, (2.3)

and consequently also the unconditional TT for any (sub-)population, by integrating out x

accordingly. Let ndt denote the number of observations in group d at time t, and suppose
that all ndt converge at the same rate to infinity. Further, denote TTa as the TT that results
from integrating TTx over the distribution of x in the group containing the members of the
treatment group D = 1 observed in t = 1. We will also provide most of the formulae and
asymptotics for the TT that results from integrating over all individuals of the treatment
groups, no matter if observed in t = 1 or in t = 0, and denote this parameter by TTb.

We will speak of unconditional TT when we refer to both: TTa and TTb. Recall that
we do not require a balanced panel. We therefore would not typically encounter all X for
all people at all time points. The observed xit refers to time point t. The often applied
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strategy to use only X-values from t = 0 to avoid that treatment effects get mediated
via such a covariate is typically not feasible when cohorts replace balanced panels. This
is the main reason why we allow for time varying covariates but do not require them.
All our methods and results are applicable to the simpler case of balanced or unbalanced
panels, as well as to the case of time invariant X. Unfortunately, assuming a balanced panel
and/or time-invariant X from the onset does not lead to equivalent results for repeated
cross-sections, but it simplifies the asymptotics (as will be shown). For balanced panels
with time-invariant X (or say, always using the X values observed before treatment), TTa

and TTb are the same.

2.1.2 Causality Graphs

It is often helpful to visualize the problem. Here we consider three Directed Acyclic Graphs
(DAGs). The first graph will be to illustrate the general idea and model. The latter show
identification and generality of DiD estimators for more complex structures, respectively.

To set the stage, recall that treatment occurs between t − 1 and t (between periods 0
and 1 in our setting). Similar to above, our outcome is given as Y and recorded covariates
as X. We add the unobserved random terms U and E acting on Y and on treatment D. In
these graphs, D indicates the treatment itself and not the affiliation to the treatment vs
control group. Since the treatment happens only once, there is no need for a time index.
In addition, we introduce characteristics C that could cause a bias in matching which is
supposed to remain stable over time (Assumption I) and can therefore be controlled for
by differencing. For this reason C is typically thought to be time invariant. Finally, we
introduce potentially unobserved variables W when highlighting the generality and power
of the method. Regarding the time indices of Y , X and U we follow the standard notation
in panel data econometrics. This does not exclude the possibility that Xt contains or is
composed of values already observed before t. Moreover, as is common in panel econometrics,
while Y, X, U show the same time index, the regression equations as well as our graph
suggests that X and U come first (same for D), impacting Y .

Consider our first causality graph (Figure 2.1). In this graph the arrow from Xt to D is
painted in gray to show that not all X are supposed to be confounders. At the same time
we are not saying that no further arrows are allowed or could be skipped (like for instance
those between the Y ). While this graph illustrates the general idea and model, it is not
sufficient for identification (what DAGs are commonly used for). For instance, it tells us
that C acts as a confounder. But since we don’t observe C, at least not completely, we can’t
condition on it. Instead, thanks to the time dimension we can apply differencing which in
turn is only sufficient for identification under bias stability, our Assumption I (2.1).

What would a DAG look like to be sufficient for identification? Recall that we use
DAGs to show in the simple matching context that Y d|X = x is mean-independent
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Figure 2.1: A dynamic DAG for illustration.

of D, where for estimating the TT this is sufficient to hold for Y 0. This allows us to
identify the potential mean of Y 0|X = x for the treated, i.e., E[Y 0|x, D = 1] for all x of
the common support. For a moment let us consider the case where X is time invariant.
Then, demanding mean-independence of ∆Y 0

t |X = x from D with ∆Y 0
t := Y 0

t − Y 0
t−1

in our context, allows us to identify the analogue to matching, i.e., E[∆Y 0
t |x, D = 1].

Like in the simpler matching case where the conditional treatment effect is given by
E[Y |x, D = 1] − E[Y |x, D = 0], it is now given by E[∆Yt|x, D = 1] − E[∆Yt|X, D = 0]. If
simple matching was already sufficient, the bias correction was redundant and we get the
same result, as then E[Yt−1|x, D = 1] − E[Yt−1|x, D = 0] = 0, i.e., we just subtracted zero.

Figure 2.2: A reduced DAG for identification.

Conditional mean-independence of ∆Y 0
t |x from D gives our Assumption I, and the

corresponding DAG is given in Figure 2.2. There we skipped the time-index of ∆Y because
we only considered the difference between Yt and Yt−1. What happens if we switch from
cases where X is time invariant to those where (at least part of) X is time variant? We
then ask D to be (mean-)independent from the difference (Y 0

t |Xt = x) − (Y 0
t−1|Xt−1 = x)

which is the needed extension of ∆Y 0
t |X = x from above. As in our graph X can also stand
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for (Xt, Xt−1), we only need to adjust the meaning of ∆Y in our DAG.

Figure 2.3: Example of a possible extension of our DAG in Figure 2.2.

The third graph (Figure 2.3) is only included in order to demonstrate that a DiD
estimator allows for much more complex structures, including endogenous confounders X.
It is not hard to see that deleting all arrows emerging from D, node X blocks all paths
between D and ∆Y giving the required conditional independence to obtain identification.

We conclude this section with the reminder that no matter which x you condition on, or
over what distribution of X you integrate, the DiD as it is introduced above only identifies
the (conditional) treatment effect of the treated; identification of treatment effects for the
non-treated needs additional non-testable assumptions that are not attractive in typical
DiD applications (Lechner, 2011).

2.1.3 Nonparametric Conditional Expectations

Most empirical papers use linear panel data methods to estimate the TT. While the
linear specification without covariates is equivalent to the method derived via conditional
expectations, there is no such result here (Meyer, 1995). Even if we had only discrete X

which we could decompose into dummies; a saturated linear model would require to include
all these dummies together with all interactions of different orders, see also Section B in the
Appendix.4 Most practical work doesn’t do this properly; instead, such inclusion is usually
arbitrary, guided by numerical convenience. Moreover, if at least one covariate is continuous
or discrete with many values, this problem is heavily aggravated. Nonparametric methods
remove these concerns. Practitioners often ignore the use of these methods and use the curse
of dimensionality as their argument against them. Yet, in most common settings, the curse
of dimensionality is not an issue as only very few of the covariates are actually continuously
measured. This is even more so for DiD compared to all competitors for nonexperimental
data, as the differencing already accounts for many counfounders.

4The common practice of splitting the sample to obtain heterogeneous estimates in the parametric world
is valid assuming the functional form is correct and there is a sufficient number of observations in each
cluster. This practice addresses parameter heterogeneity; it does not cure functional form misspecification.
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Now, suppose the scale of Y and the set of covariates X are given. In a first step, for
each group d and each time point t, we can estimate their mean functions mdt(x) from
the data set {Yit, Xit}ndt

i=1|Dit = d. Let us split the vector of covariates Xit into a vector
with p continuous variables entering the smoother, say Xs

it = (Xs
it,1, ..., Xs

it,p) and another
vector with k categorical variables Xc

it = (Xc
it,1, ..., Xc

it,k). We use a multiplicative kernel
K(Xi, x, h, λ) = W (Xs

i , xs, h) · λdXi,x where dXi,x: =
∑k

l=1 11{Xc
it,l ≠ xc

l } and W a product
of p univariate continuous kernels w{(Xs

it,l − xs
l )h−1}h−1, l = 1, ..., p, where h ≥ 0 and

λ ∈ [0, 1] are our bandwidths.5 Function 11{A} is equal to 1 if the event A is true, and zero
otherwise. Under standard regularization conditions outlined in Ouyang et al. (2009) (cf.
also Li et al. (2009) for propensity score weighting), namely on the smoothness of mdt(·)
and density fdt(·) of Xs in group d at time t, for λ, h → 0 when ndt → ∞, we have√

ndthp {m̂dt(x) − mdt(x) − Bdt(x, h, λ)} → N(0, Ωdt(x)) (2.4)

where the conditional mean estimator, given by

m̂dt(x) =
ndt∑
i=1

K(Xi, x, h, λ)Yi /
ndt∑
i=1

K(Xi, x, h, λ) (2.5)

is the local-constant least-squares estimator where xs is an interior point of Xs. For boundary
points, we need to take boundary kernels to achieve this rate.

The convergence rate, and thereby the curse of dimensionality, is only affected by the
continuous covariates (even though we smooth discrete covariates), without imposing any
separability structure between continuous and discrete covariates. Unless λ = 0, this does
not correspond to sample splitting, but can be more efficient in practice. For the univariate
kernels w(·) defined above, the resulting bias of this mixed smoothing equals

Bdt(x, h, λ) = h2
[
∇tmdt(x)∇fdt(x)f−1

dt (x) + tr{∇2mdt(x)}
]

×
∫

w(u)u2du (2.6)

+λ
∑

x̃,dx̃,x=1
{mdt(xs, x̃c) − mdt(x)} f(xs, x̃c)f−1

dt (x)

and Ωdt(x) = V ar(Y |x, D = d, T = t)
∫

w2(v)dv f−1
dt (x), (2.7)

where ∇µ(x) denotes the p-dimensional vector of first derivatives of the function µ(·)
with respect to the continuous covariates xs, and ∇2 is the corresponding Hessian matrix.

5The notation for the bandwidths h and λ are distinct because of the asymptotic properties for continuous
vs discrete variables. Note that λ = 0 leads to an indicator function and λ = 1 to a uniform weight function.
We do not have a second set of bandwidths (just one per covariate). In practice, we can use a separate
bandwidth (i.e., hl, λk) for each covariate. For notational convenience we treat them as equal in our formulae
(hl ∀l, and λk = λ ∀k). More general extensions are straightforward.
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Equation (2.4) shows that only the number of continuous covariates (p) impedes the
parametric rate (root-n) of convergence. By using local-polynomials for the continuous
covariates, we could achieve a faster rate for the bias (h2) as long as we are willing to
accept higher smoothness conditions on mdt(·) and the densities of the continuous covariates.
Although this is standard in the semiparametric econometrics literature, especially in the
context of sieve estimators, we abstain from those tricks and concentrate on practical issues.
In our application, all of our covariates are discrete and hence a local-polynomial estimator
is infeasible.

2.2 Covariates and Scale

Before estimating the TT, we first need to decide on the set of covariates, and the scale
of the response Y . Even if prior knowledge like intuition or economic theory (often called
‘expert’ or ‘domain’ knowledge) may tell you assuming a common trend is sensible, it does
not necessarily tell you the right scale of Y nor the right set of covariates XS ⊆ X for
which it holds. What is often criticized as the bane of DiD estimation, we suggest here to
turn into a boon. We use such prior knowledge to help specify the causality model, but
allow the data to drive the set of confounders, scale of Y and the form of the conditional
expectations. For the ease of presentation, we only consider TTa; modifications for TTb and
TTx are mostly evident.

The scale of Y matters a lot because, if the common trend (2.1) holds for one scale of
Y , it can hold for affine, but not for nonlinear transformations (e.g., for convex and concave
transformation this becomes evident by Jensen’s Inequality). Yet, the scale of Y is clearly
irrelevant for Assumption I if there is no trend or if there is no selection bias (i.e., both sides
of (2.1) are zero); see also Roth and Sant’Anna (2023) for a formal proof and a discussion
of time invariant mixtures of the latter cases. For all other situations, the scale is important.
Unless the researcher has a strong opinion about it, this could be chosen data-adaptively.
The covariates are often driven by reasons of total versus direct (or partial) TT estimation
(i.e., filtering out certain indirect effects), the reduction of noise, and Assumption I. While
the first is fully up to the researcher’s interest, the second should be limited to a few cases
(due to its implications for interpretation), the third could be done data-adaptively.

Although we propose a feasible, computationally inexpensive procedure, both choice
problems are theoretically intertwined. Therefore, the data-adaptive choices should be based
on the same objective function and be considered as a simultaneous problem. Note first that
different sets of covariates may define different common supports, and the data-adaptiveness
of the proper CSC is straightforward. The objective is to comply with Assumption I. As all
non-treatment outcomes Y 0 are observed only prior to the treatment, we consider periods
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prior to treatment, i.e.

1
n1•

n1•∑
i:Di•=1

{
m1t(xi•) − m0t(xi•) − m1(t−1)(xi•) + m0(t−1)(xi•)

}2
(2.8)

for t < 1, where the summation is over treated individuals in time period t (i.e., n1• = ndt,
Di• = Dit and xi• = xit for a fixed t) if we are interested in TTa (similarly for TTb,
n1• = n1t + n1(t−1), with Di• = Di and xi• = xi running over both periods). Here m(·)
refers to the conditional expectation of a potential transformation of Y , conditioned on
different subsets xS of the potential set of covariates. We could choose a transformation
and covariates that minimize (2.8). Alternatively, we could likewise integrate (2.8) over the
xi1 of the treated in t = 1.

As discussed, (2.8) does not fully correspond to Assumption I, it only gives credibility
to it. This is why we speak of evaluation, not testing. It also has little to do with the
typical variable selection problem, especially popular in linear treatment effect estimation
with LASSO. The target in that literature is efficient estimation in linear high-dimensional
models, while identification is already taken as granted, and the objective function is a
penalized least squares or moment condition for estimation. It has nothing to do with
our objective or procedure. Moreover, our above objective function is different from the
one we use for estimation, and as such, popular procedures for debiasing or post-selection
inference have no meaning here. Following Kuchibhotla et al. (2022), the only feasible
way we see here for addressing the post-selection problem is to perform an analogue to
sample-splitting; either to use t < 0 in (2.8), or to split the samples of time point 0 when
using t = 0 in (2.8). In the case of facing panel data one still needs some orthogonality
assumption for the residuals. Potential auto-correlation in the residuals destroys selective
inference in this situation (cf. Roth, 2022). In our conclusions we discuss bootstrap based
inference that could account for the variability of our entire procedure. In practice, instead
of doing post-selection or selective inference, we could do a robustness check by performing
estimation and testing not only for the best scale-and-covariates combination found in the
prior-to-treatment periods, but also for the second and third best.

2.2.1 Data-Driven Evaluation of Potential Scales

Finding a strictly monotone transformation of Y that fulfills (2.1) corresponds to finding a
proper scale. Consequently, this scale should provide a reasonable interpretation. As men-
tioned above, unless you face one of the trivial solutions (no trend or no difference between
groups before treatment) in which the scale of Y is irrelevant for (2.1), asymptotically that
transformation is unique. We say ‘asymptotically’ as for finite samples this does not need to
be the case. In practice, this is not an issue as for interpretation as we would only compare
two to four clearly different scales. You may think of the Box-Cox transformation which
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depends on a parameter θ giving Y (θ) but you only consider θ ∈ {0, 0.5, 1}, from a set
Θ. For each set xS of covariates, there exists a parameter value θS

opt that optimizes the
common trend condition. Clearly, (2.8) looks at the squared deviations from Assumption I
in a prior period, and can thus be understood as a measure of variation. Since variations are
scale dependent, we need to adapt the criterion by accounting for the variance of Y (θ), and
define for any given S and a fixed t < 1, the optimal transformation parameter for Y by

θS
opt = argmin

θ ∈ Θ

1
n1•

n1•∑
i:Di•=1

{
m̂1t(xS

i•) − m̂0t(xS
i•)

−m̂1(t−1)(xS
i•) + m̂0(t−1)(xS

i•)
}2

V̂ ar•
−1[Y (θ)], (2.9)

where V̂ ar•[Y (θ)] is a standard estimator of the unconditional variance of the transformed
responses. As for n1• and Di•, the • indicates if this variance refers to the (sub-)population
of all subjects belonging to the treatment group or only the treated in t.

As nonparametric conditional expectation estimators depend on bandwidths, it is
worth mentioning that for this step, we do not need optimal bandwidths for each θ. It is
sufficient to have a bandwidth for which the selection outcome along the above criterion
does not importantly change compared to the outcome based on an optimal bandwidth.
This statement can hardly be defined more precisely due to different uncertainties we face,
including the variance of various estimators, and the question of how we define ‘optimal
bandwidth’ in our context. In practice, we ask that for the grid of values over which we
search for θ, our working bandwidth picks the same θS

opt (or a very similar one) as the
optimal bandwidth would. We suggest using computationally attractive plug-in bandwidths
(see Henderson and Parmeter, 2015 and Chu et al., 2015). For small samples, these tend
to slightly oversmooth what would stabilize the numerical performance of the selection
procedure. You should not search for the optimal bandwidth using a criterion like (2.8) or
(2.9) as these criteria are supposed to be based on reasonable estimates of m̂(·), but not
vice-versa.

2.2.2 Data-Driven Evaluation of Confounder Sets

While prior knowledge helps clarify which covariates to include, data-driven methods can
help guide us by choosing credible sets. In practice, the choice of X in an academic paper
typically relies on many dummy variables to attempt to control for all the biases a referee
would consider feasible. This means, their inclusion is neither due to a clear data generating
or causal model, nor on considerations of total versus partial impact measurement.

It is often argued that the covariates should not be impacted themselves by the treatment,
and therefore, only time invariant covariates are considered, or only values of X observed
before treatment. In other fields, people are interested in direct effects (or to control for
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some specific indirect effects), and therefore include certain covariates because they are
affected by treatment. So both, the set of covariates you want to include, as well as the set
of potential confounders you allow for, depend on the parameter of interest. The correct
interpretation hinges on your assumptions. These must be consistent with your data, and
your interpretation with these assumptions (Kahn-Lang and Lang, 2019). This implies you
may not want to allow for any combination of covariates; instead you prefix a set S of
covariate sets S from which you wish to choose the most appropriate one(s). We should
not think here of a step-wise elimination of covariates but of a ranking of all eligible sets
regarding credibility. Then, for the θS

opt from above,

Sopt = argmin
S∈S

1
n1•

n1•∑
i:Di•=1

{
m̂1t(xS

i•) − m̂0t(xS
i•)

−m̂1(t−1)(xS
i•) + m̂0(t−1)(xS

i•)
}2

V̂ ar•
−1[Y (θS

opt)] (2.10)

defines the optimal set along the analogue to (2.9), i.e., you jointly calculate the same
criterion for all (θ, S) combinations to obtain (θSopt

opt , Sopt) which is the most credible regarding
the DiD identifiability assumption. In practice these may not be unique for a given data
set; then the practitioner may try all those optimal pairs but should keep in mind that they
may define somewhat different treatment effects.

If initially there are too many sets, we can even perform pre-selection procedures. A
simple method is a visual check to see to what extent a covariate could be a confounder.
When plotting the distribution of a potential confounder per group and time period,
these should exhibit different features between groups; otherwise they are not confounders.
Certainly, pre-selection could also be based on variable selection in regression; if they exhibit
absolutely no impact on Y , they are of no use. In the context of nonparametric estimation,
however, those procedures are more complex than directly applying (2.10) (Hall et al.,
2007). Moreover, these selection procedures might be based on objective functions different
from minimizing the deviations in (2.8). Generally we would advise against mixing different
objective functions, especially where the objective is essentially the same.

In practice, we suggest using a penalty factor to account for too many covariates. We
tried several alternatives, but found that a simple AIC factor worked well in simulations.
Considering our criterion in (2.10), we propose to add(

2(k + p)2 + 2(k + p)
)

/ (n1• − (k + p)) , (2.11)

to penalize against including too many covariates. In our simulations, this factor helps to
correctly identify models with irrelevant covariates even for small samples.

It is possible to formally conduct a nonparametric significance test to see if Assumption
I is rejected for any given pair (θ, S) for the period before treatment. In practice, you would
test this for the “optimal set” or the one you favor (e.g., for interpretational reasons). This
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can be done by taking (2.8) as a test statistic (for t = 0) as will be shown in Section 2.4.
However, recall that you can only test the credibility of Assumption I, not the assumption
itself. Note also that applying this idea to post-treatment periods is questionable (cf.,
Kahn-Lang and Lang, 2019).

2.3 Treatment Effect Estimators

In this section we first consider heterogeneous (conditional) treatment effects on the treated
for both repeated cross-sections and balanced panels. We then turn to average (unconditional)
treatment effects on the treated. Asymptotic results are discussed in each setting.

2.3.1 Conditional Treatment Effect on the Treated

To keep notation simple, let henceforth Y and X denote the adequately scaled response
and the chosen covariates. Define the DiD estimators of the conditional TT (also known as
CATET) for x ∈ X

T̂ T x = {m̂11(x) − m̂01(x)} − {m̂10(x) − m̂00(x)} . (2.12)

Recalling Section 2.1.3, we immediately obtain for this estimator

Proposition 2.3.1. Under the assumptions (A1) and (A2) of Racine and Li (2004), extended
to the four groups, and assuming independence of errors uit := Yit − mdt(Xit) for all groups,
for all x being interior points for each group, estimators of m̂dt(x), for each combination of
d = 0, 1 and t = 0, 1 will be independent for any x from the common support as well. T̂ T x

has a smoothing bias which is the difference of differences of the corresponding individual
biases given in (2.6), i.e.,

{B11(x) − B01(x)} − {B10(x) − B00(x)} . (2.13)

Similarly, its asymptotic variances are the sum of their asymptotic variances, i.e.,

Ω11(x)/(n11hp
11) + Ω01(x)/(n01hp

01) + Ω10(x)/(n10hp
10) + Ω00(x)/(n00hp

00).

The biases and variances resulting from the smallest ndt will dominate the others. Following
(2.4), T̂ Tx converges at this rate to a normal distribution.

It is well known that the assumptions (kernel, smoothness or other regularity) could
be modified, but for simplicity, we stick with the work of Racine and Li (2004). We allow
each bias term to have its own set of bandwidths (hdt, λdt). As sign and smoothness of the
mdt(·) should not change over d and t, equation (2.6) suggests that the differencing has not
only a bias reducing effect regarding identification (i.e., a potential specification bias), but
also regarding smoothing.
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In the popular setting of balanced panels and conditioning only on covariates from t = 0
with notation nd = nd1 = nd0, assuming the independence ui0 ⊥ ui1 for all i becomes less
credible.6 The asymptotics simplify nonetheless, as now we have for d = 0, 1

m̂d1(x) − m̂d0(x) =
∑nd

Di=d:i=1 K(Xi0, x, hd, λd) (Yi1 − Yi0)∑nd

Di=d:i=1 K(Xi0, x, hd, λd)
. (2.14)

Corollary 2.3.1. For balanced panels with σ̃2
d(x) = V ar(ui1 − ui0|Xi0 = x, D = d), and

conditioning only on covariate values observed in t = 0, allowing for heteroskedastic
autocorrelation in uit, but else the same assumptions as in Proposition 2.3.1, the bias
expression for T̂ T x remains the same, whereas its variance simplifies to

σ̃2
1(x)/(n1hp

1)
∫

w2(v)dv f−1
10 (x) + σ̃2

0(x)/(n0hp
0)
∫

w2(v)dv f−1
00 (x) .

As we will see below, the asymptotics of the unconditional TT are not straightforward.
But even for this simpler case of conditional TT estimation, in practice, no one would try to
estimate the bias and variance of T̂ T x, especially not for all potential x. Even the estimation
of the variance of T̂ T a or T̂ T b can hardly be recommended. Instead, we recommend to use
a wild bootstrap procedure. Furthermore, we would suggest to use slightly undersmoothing
bandwidths to reduce the smoothing bias(es) and concentrate on the estimation of the
variance(s).

Before we turn to the unconditional treatment effects, it is worth recalling two points.
First, looking at conditional treatment effects may be the most insightful way to study
(potential) heterogeneity of treatment effects. Consequently, the above results are not just
an intermediate step for the ‘popular result’. Second, in the next subsection, we directly
integrate over the vector of covariates x to obtain TTa and TTb. To further explore the
heterogeneity of treatment effects, you may integrate only over a subvector of x, say x1 with
x := (x1, x2), to study the heterogeneity over different groups defined by x2. For example,
if x2 is a binary variable for sex assigned at birth, you obtain TTx2 to study the respective
TT for males and females separately (as we will do in Section 4.3).

2.3.2 Unconditional Treatment Effect on the Treated

Given the estimator in (2.12), it is straightforward to obtain a model-free DiD estimator
for the unconditional TT by integrating (i.e., averaging over the estimates of) T̂ T x. For the
sake of brevity, we consider TTa, estimated by averaging over the n11 observations in group
d = 1 at time period t = 1: supposing that all xi1 ∈ X , i.e., assuming Xa, we have

T̂ T a = 1
n11

n11∑
i:Di1=1

{
m̂11(xi1) − m̂01(xi1) − m̂10(xi1) + m̂00(xi1)

}
. (2.15)

6In the case of repeated cross-sections, we typically observe ui0 and uj1, where i ≠ j. In other words,
dependencies in errors over time are unlikely.
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In a balanced panel when all covariates Xit are kept fixed over time the distinction between
TTa and TTb becomes meaningless. The analogue to TTb would then be to average over
each treated xi treated twice, which does not make much sense. Recall that this situation
does not imply that these characteristics Xi are indeed time invariant, but that one only
considers x-values observed at t = 0 (i.e., before treatment).

At this stage, it is worthwhile recalling the common support condition. In practice,
this is achieved for the continuous covariates by redefining the population of interest such
that CSC is fulfilled, which typically corresponds to trimming at the boundaries. This is
convenient for other reasons, like avoiding the necessity of boundary corrections for the
estimator m̂dt(x). To avoid complicating our formulas, and in abuse of the above notation
let us suppose that in (2.15), we only average over interior points. We are aware that taking
it strictly, this supposition together with the notation contains a contradiction as at least
for estimating m̂11(·) some of them will be boundary points. In practice there are at least
three alternative options: (i) using boundary correction (via boundary kernels or local
polynomials) for the continuous boundary points, (ii) skipping the boundary points from
X , (iii) ignoring the boundary problem as the wild bootstrap samples will contain exactly
the same boundary points and you stick to bootstrap inference anyway.

For the asymptotics, we refer to the fact that in case of independent residuals, statistic
(2.15) can be viewed as an extension of the kernel based matching estimator. It is feasible then
to replicate the calculations for nonparametric matching estimators in the existing literature
to obtain the bias and variance, and invoke the central limit theorem. The convergence of
m̂dt(x) implies we can choose λdt and hdt for dim(Xs) = p ≤ 3 such that B = o(n−1/2

dt ) and√
ndth

p
dt = o(1). To achieve this for more than three continuous covariates, we could invoke

higher-order kernels or local-polynomial estimators, both based on higher-order smoothness
assumptions for mdt(·) and the distributions of X.7 Asymptotically, for dim(Xc) = k, we
have no such restriction unless k increases with the sample size.

Proposition 2.3.2. For p ≤ 3 such that h4
dt and n−2

dt h−p
dt are of order o(n−1

11 ) we obtain for
the TTa estimator 1

n11

∑n11
i:Di1=1 T̂ T Xi1 (to emphasize also the randomness of the sample)

and common support Xa

√
n11

 1
n11

n11∑
i:Di1=1

T̂ T Xi1 − TTa

 → N(0, Va), (2.16)

where for κdt = lim(ndt/n11) and σ2
dt(x) = V ar[Y |x, D = d, T = t]

Va = E
[
{m11(X) − m10(X) − m01(X) + m00(X) − TTa}2|D = T = 1

]
7As we mentioned in the introduction, this is not a restrictive assumption for many data sets. In

econometrics, when sieve estimators are used, those higher-order smoothness assumptions are standard.
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+E
[
σ2

11(X)|D = T = 1
]

+ E

[
σ2

10(X)f2
11(X)

κ10f2
10(X)

|D = 1 − T = 1
]

+E

[
σ2

01(X)f2
11(X)

κ01f2
01(X)

|D = 1 − T = 0
]

+E

[
σ2

00(X)f2
11(X)

κ00f2
00(X)

|D = T = 0
]

, (2.17)

where each fdt(·) stands for the density of X in group d at time t.

Uniform rates of convergence could be obtained by following results similar to Racine
and Li (2004). In the Appendix A.2 we give the influence functions (IF) for T̂ T a and T̂ T b

to derive a seemingly simpler though equivalent presentation of the variance of T̂ T a and to
provide the asymptotic variance of T̂ T b. The variance expression in Proposition 2.3.2 we find,
however, more informative as it explicitly shows where the five parts of the variance come
from. Notice that Va is not the asymptotic first-order variance of the estimator itself but of√

n11T̂ T a. In Appendix A.2 we will see that for D ⊥ T |X which is true for the case where
X does not change over time,8 the resulting simplified variances meet the efficiency bounds
given in Sant’Anna and Zhao (2020), though in a quite different context (fully parametric
doubly robust DiD estimation for time invariant X, where D ⊥ T , and D ⊥ T |X).

We can also give a simpler variance expression for balanced panels with time invariant Xi

using the same notation as in Corollary 2.3.1. Define κ̃0 = lim(n0/n1) with nd = nd0 = nd1
as above, and denote our unconditional TT in balanced panels with covariate values only
taken from t = 0 by T̃ T , then we have

Corollary 2.3.2. For balanced panels with σ̃2
d(x) as in Corollary 2.3.1, conditioning only

on covariate values observed in t = 0, allowing for heteroskedastic autocorrelation in uit,
but else the same assumptions as in Proposition 2.3.2, the variance of the TT estimator
simplifies to

1
n1

{
E
[
{m11(X) − m10(X) − m01(X) + m00(X) − T̃ T}2|D = 1

]
+E

[
σ̃2

1(X)|D = 1
]

+ E

[
σ̃2

0(X)f2
10(X)

κ̃0f2
00(X)

|D = 0
]}

. (2.18)

In practice we prefer to estimate the variance of these TT estimators via a wild bootstrap
procedure. Given the existing literature, the bootstrap inference for these estimators is
relatively easy, so we defer it to the next section. For simplicity, we subsequently assume
CSC holds, i.e., we have at least Xa when speaking of TTa, etc.

8Taking group assignment or time as given, this notation could be confusing. What D ⊥ T |X means is
that even if you know the distributions of X for all periods and groups, D is not helpful for guessing the
current time period. If all X values are from period t = 0, then this is true for sure, but else we don’t know.
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2.4 Testing

To complete the cycle of a DiD analysis, we consider several testing problems that can
be of interest in this context. We first discuss how to test in general for significance
of an unconditional or a particular conditional treatment effect. Then we introduce a
nonparametric test statistic that can be used for checking different interesting questions:
first we use it to jointly test for the significance of conditional treatment effects, then we
propose it for checking if treatment effect heterogeneity is large, and finally we discuss how
it could also be used for supporting bias stability: Assumption I (recall Section 2.2.2).

2.4.1 Significance of Treatment Effects

Consider the null hypothesis

Hz
0 : TTz = 0 vs. Hz

1 : TTz ̸= 0 . (2.19)

This can either refer to a test for significant unconditional treatment effects TTz of type
z = a or b, or it can refer to a significance test for a specific conditional treatment effect
TTx for which x is given. In either case we suggest to construct a wild bootstrap (1 − α)%
confidence interval for the respective estimate T̂ T z to see if zero is included or not; if not,
the H0 from (2.19) can be rejected at level α. You may alternatively consult Proposition
2.3.2 and Proposition 2.3.1 respectively to evaluate the option to estimate a confidence
interval directly without a bootstrap. This is only recommended for large data sets.

2.4.2 Composite Significance Testing

The following three testing problems are all based on the same general statistic of squared
difference-in-differences. Specifically, for a given time t we define

Tt := 1
n1t

n1t∑
i:D1t=1

{
m̂1t(xit) − m̂0t(xit) − m̂1(t−1)(xit) + m̂0(t−1)(xit)

}2
, (2.20)

which can be used to test several hypotheses of the general form:

Ht
0 : m1t(x) − m0t(x) − m1(t−1)(x) + m0(t−1)(x) = 0

∀x ∈ supp(X|D = 1, T = t) .

Notice that if we now want to use a (wild) bootstrap to approximate the p-value via the
distribution of Tt under H0, then we need to resample the data under this null hypothesis
which is a nontrivial task and will therefore be discussed in detail below.
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Joint Significance of Heterogeneous Effects
When heterogeneity in treatment effects is important, it is more sensible (from a

statistical point of view) and interesting (from an interpretation point of view) to test all
TTx jointly over the sample of interest. In the above terms that means to test H1

0 (supposing
treatment took place between t = 0 and t = 1) by checking if T1 under H1

0 is significantly
different from this statistic obtained from our sample.9

Homogeneous Treatment Effects
You can extend the above idea to test the null H1

0 (c) : TTx = c for either all or an
interesting subrange of x, with c being a given constant. An interesting case is when you
apply this to test all TTx jointly over the sample of interest with c := T̂ T a. The resulting
test statistic

T H
1 := 1

n11

n11∑
i:D1t=1

{m̂11(xi1) − m̂01(xi1) − m̂10(xi1) + m̂00(xi1) − c}2

would check if treatment effects are homogeneous over the observed xi1. If dim(x) = 1, we
could alternatively construct bootstrap confidence intervals and bands around TTx for all x.

Bias Stability Condition
While Assumption I cannot be directly tested, its credibility can on periods prior to

treatment. We use essentially the same statistic as we did for the selection procedures,
namely (2.8), though a rescaling by the response variance estimate is not needed here. As
for the selection of covariates and scale, the statistic Tt is applied to the pre-treatment
period (from t = −1 to 0), where by definition, Yi = Y 0

i for all subjects i. Then, to test if
the bias stability in the period(s) prior to treatment (e.g., from t = −1 to t = 0) held (H0

0 ),
consider the statistic T0. Not rejecting H0

0 would strengthen Assumption I’s (2.1) credibility.

2.4.3 Asymptotic Behavior

Here we study the asymptotic behavior of T1. For T0 and T H
1 , the derivations follow

analogously. In case you are concerned about setting, e.g., c := T̂ T a, note that T̂ T a converges
faster than m̂dt(·) such that its randomness is negligible in the first order asymptotics of
T H

1 . To simplify notation, consider the case of a single continuous covariate x ∈ [0, 1]. We
later discuss the case of p = dim(x) > 1, the inclusion of discrete covariates and the much
simplified statistical behavior of this test statistic when we are provided with a balanced
panel and covariates fixed over time are discussed afterwards.

Theorem 2.4.1. Define the four one-dimensional densities fdt(x) implicitly by
∫ xit

0 fdt(x)dx =
i/ndt for all observed xit with Dit = d.10 Assume all mdt(·) and fdt(·) are r ≥ 2 times

9As you may prefer T Tb over T Ta, you can also average in (2.20) over all treated (n11 + n10).
10We could alternatively assume that all samples have asymptotically regular designs with respect to

their density fdt(·).
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continuously differentiable on [0, 1], and the kernel W (X, x, h) is of order r.
For the optimal testing rate h = O(n−2/(4r+1)

11 ) with n11h2 → ∞, and κdt as defined
after (2.16), we have under H0

n11
√

h

T1 − 1
n11h

∫
W 2

1∑
d,t=0

∫
σ2

dt(x)f2
11(x)

κdtfdt(x) dx

 −→ N(0, V) (2.21)

as all ndt → ∞, where the variance V/(n2
11h) of statistic T1 is

2
n2

11h

∫
(W ∗ W )2

( 1∑
d,t=0

∫
σ4

dt(x)f2
11(x)

κ2
dtf

2
dt(x)

dx (2.22)

+2
∑

mix(dt,ks)

∫
σ2

dt(x)σ2
ks(x)f2

11(x)
κdtκksfdt(x)fks(x) dx

)
,

for which
∑

mix(dt,ks) runs over the six combinations of (dt) ̸= (ks), d, t, k, s ∈ {0, 1}.

For the case where the statistic T1 averages over the n1 = n11 + n10 treated, replace n1
for n11 and f1(·) for f11(·) in (2.21), (2.22), and in the definition of κdt. Its extensions to
allow for the inclusion of weights is discussed in the next section.

Similar statements can be made for higher dimensions (p = dim(x) > 1) using multi-
variate kernels. For simplicity, assume we take the same bandwidth h for all covariates; we
only have to replace h by hp in (2.21) and adjust its rate accordingly. Again, for p > 3, this
requires bias reducing methods like the use of higher-order kernels or local-polynomials.
Similarly, the inclusion of discrete covariates with smoothing parameter λ does not change
our result, but renders the expressions more complex. Asymptotically, like in estimation,
their inclusion does not change the rate. Due to (2.14), for balanced panels we have

Corollary 2.4.2. Consider a balanced panel taking all covariate values from t = 0 with
σ̃2

d(x) = V ar(ui1 − ui0|x, D = d), and let f1(·) define the density of X for the treated, f0(·)
for the controls. Then, along with the assumptions from Theorem 2.4.1,

n1√
h

{
T1 −

∫
W 2

h

∫
σ̃2

1(x)f1(x)
n1 + σ̃2

0(x)f2
1 (x)

n0f0(x) dx

}
−→ N(0, Ṽ), (2.23)

under H0, for κd = lim(nd/n1), and with

Ṽ = 2
∫

(W ∗ W )2
( 1∑

d=0

∫
σ̃4

d(x)f2
1 (x)

κ2
df2

d (x)
dx + 2

∫
σ̃2

1(x)σ̃2
0(x)f1(x)

κ1κ0f0(x) dx

)
. (2.24)
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2.4.4 Feasible Bootstrap Test

Arguments in favor of using a bootstrap for testing are as strong as for estimation. We need
large samples before the first-order terms fully dominate the second and third-order terms.11

Even if the samples were large enough to trust the normal approximation, and supposing
that we could neglect higher-order terms, the estimation of the first-order terms for the
variance(s) we saw above would still be a non-trivial problem. As said, the challenge is to
simulate the distribution of the statistic Tt under the null hypothesis. We need to produce
bootstrap samples that come from a data generating process similar to the observed data,
but under which Ht

0 holds.
Our proposal follows ideas of the related literature, namely Dette and Neumeyer (2001)

and Vilar and Vilar (2012). The latter provide a consistency proof for our procedure. Their
context is more complex regarding the correlation structure of the errors as they test
several differences at a time. However, they only check differences of pairs of nonparametric
functions whereas we are looking at the difference of differences. Only the latter has a
consequence for the bootstrap. Different scenarios are conceivable to comply with Ht

0. For
that reason, we need to take the residuals from the alternative (as proposed by Vilar and
Vilar, 2012) instead of taking them from the null model (as proposed by Dette and Neumeyer,
2001).12 This has consequences for the calibration (Sperlich, 2014). In the following we
outline the procedure for T1 under H1

0 , i.e., under the hypothesis that

m11(x) − m01(x) − m10(x) + m00(x) = 0 ∀x ∈ supp(X|D = 1, T = 0) .

The steps are:
1 Pool data (over treated and control groups) within each year t, (t − 1), and estimate

mt=1(x) := E[Y |T = 1, X = x] for all x observed in t = 1. Analogously, mt=0(x) :=
E[Y |T = 0, X = x] for all x observed in t = 0.

2 Generate a large number (B) of bootstrap samples {Y ∗b
it , (Dit = d), t, Xit}ndt

i=1, b =
1, ..., B, for each of the four (d, t) groups by setting Y ∗b

it = m̂t(Xit)+u∗b
it , for given d, t, i =

1, ..., ndt, where u∗b
it might be generated by ûit := Yit − m̂dt(Xit) times an independent

N(0, 1) variable.13

11For smaller samples sizes, the convergence rates observed in simulations are even faster than theory
suggests (see e.g., Roca-Pardiñas and Sperlich, 2010).

12More specifically: in the literature on nonparametric testing, people either advertise to take the (larger)
residuals from the null hypothesis, or they advertise the (smaller) residuals from the alternative as this
makes the test more powerful. A problem with the former is that in case the null hypothesis is far from
correct, the residuals can become quite large and destroy the power of the bootstrap test. In contrast, the
latter strategy can lead to over-rejection in practice; see Sperlich (2014). Here we chose nonetheless the
latter, mainly because different scenarios can result in the null hypothesis, and it is not clear from which to
take the residuals then.

13Note that we define residuals ûit to be taken from the alternative, i.e., estimating the conditional
expectations mdt(·) for all four groups separately, i.e., without pooling.
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3 From these samples, calculate B estimators T ∗b
1 which are calculated as in (2.20), but

with the m̂dt(·) replaced by their bootstrap analogues m̂∗b
dt(·) estimated at {xit}n11

i:D=1.

4 From the B bootstrap estimates T ∗b
1 , obtain the p-value for the test statistic by

counting how often the bootstrap statistics are larger than T1.

The key idea is the pooling in step 1, which guarantees that the null hypothesis (2.1) will be
fulfilled in the bootstrap samples. It is, however, possible that within a year, the differences
between groups are so severe that the pooling seriously diminishes power. For a robustness
check, we could then switch the pooling and consider md(·), d = 0, 1. This has the tendency
to suffer from size distortions in the sense of over-rejection. A possible reason why our
former pooling proposal outperforms the latter is the following: D is definitely a function of
X (by the definition of confounders), T should be much less so (for time invariant X it is
definitely not). Consequently, under the null hypothesis of no treatment effect, a response
prediction based on mt(x), ignoring d, should outperform a prediction based on md(x),
ignoring t. It may not always be true, but it likely occurs more often than not. This is
confirmed by our simulations. Certainly, this bootstrap test can have poor power when the
true data generating process is too far from the bootstrapped one.

It is obvious how to modify this procedure for T0 in order to test the credibility of
Assumption I: you simply shift the entire procedure by one period to only compare cohorts
before treatment started. Moreover, there exists an extensive literature on how to adapt
the wild bootstrap to situations with correlated errors, may it be by given clusters (inside
the groups) or autocorrelation (in panel data). Many of these modifications can be applied
to our bootstrap in a straightforward way.

For more complex modifications or generalizations of our test, one should check the
validity of the bootstrap procedure (at least with simulations) since its consistency does not
necessarily carry over to all kinds of estimators or complex generalizations. For instance,
Neumeyer and Sperlich (2006) studied a test in which they compared marginal (though not
necessarily causal) effects from different cohorts with a similar statistic. For their context
and estimator the wild bootstrap procedure was inconsistent and even divergent.

3 Nuts and Bolts

The basics of our methodology are given, but in practice there are many issues which can
arise. In order for this approach to be useful in applications, we dig a bit deeper into the
mechanics. In Section 3.1 we discuss practical issues (e.g., bandwidth selection). In Section
3.2 we outline a suggested algorithm as well as the R functions that can be used to carry
out an analysis. In the Section 3.3 we show the finite sample performance via simulations.
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3.1 Practical Issues

In this section, we discuss four critical issues surrounding the practical use of our procedures,
namely the data-driven choice of bandwidths, bootstrap inference, how to incorporate
sample weights, and potentially useful alternatives to kernel smoothing.

3.1.1 Bandwidth Selection

Bandwidth selection has a long history in nonparametric econometrics and it is a common
view that they should be selected automatically via the data. Cross-validation (CV) routines
are commonly performed and can be found in many texts (e.g., Henderson and Parmeter,
2015). Plug-in bandwidth selectors for both continuous (Silverman, 1986) and discrete (Chu
et al., 2015) data are feasible and less computationally intensive. See Köhler et al. (2014)
for a review.

Data driven methods are attractive, but it is unclear what objective function the CV
procedure should attempt to minimize. It can be argued that the final objective is not the
optimal estimation of the TTx, but of TTa or TTb. From a theoretical, asymptotic point
of view, for those kind of semiparametric estimators, the optimal bandwidth must be of a
faster rate than the usual optimal one or else its choice has only higher-order effects. This
is in line with the findings of Frölich (2005) whose simulations show that CV bandwidths
perform well in this respect. This occurs because CV bandwidths tend to undersmooth,
but still keep the variance under control. For the matching context, Galdo et al. (2008)
proposed a modified nonparametrically weighted CV method, Häggström and Luna (2014)
a complex plug-in method based on nonparametric prior estimators, and Barbeito et al.
(2023) a smoothed bootstrap method.

In our settings, we need bandwidths for at least four different nonparametric estimators.
A computationally intensive method would be to use CV on each of the conditional
expectations.1 As most averages will only be made over the treated in t = 1, we propose to
use least-squares cross-validation (LSCV) to estimate the bandwidths for the first conditional
expectation, i.e.,

LSCV (h, λ) =
n11∑

i:Di1=1

(
Yi − Ê−i [Yi|X = xi]

)2
, (3.1)

where Ê−i [Yi|X = xi] is the leave-one-out estimator of E [Yi|X = xi] for the treatment
group in time period 1 (i.e., m11(·)). The CV procedure picks the bandwidths (h, λ) which
lead to the best out-of-sample prediction of the data (i.e., minimize the CV criterion). The
bandwidths for the other conditional expectations can then be corrected by the sample size
(the other three conditional expectations are expected to share the same smoothness as the
first).

1We also tried this when conducting our application and found similar results.
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If the set of potential sets of covariates, the number of potential transformations of Y ,
or sample size is too large for running the CV for all potential models, we can first resort
to plug-in methods, and apply (3.1) once the selection of covariates and transformation is
concluded. This is based on the assumption that the ranking of models along the selection
criterion is robust within a reasonable range of bandwidths. For the continuous covariates,
we may take a simple plug-in bandwidth developed only for densities because (i) it does
not depend on the transformation θ and (ii) depends on the set of further covariates only
via the rate. For discrete covariates, we could choose λ such that about √

ndt observations
are included in each estimation.

As we explain in more detail in Section 3.2.1, for estimation, as we have done in
our application, we suggest the method above. We use CV to select the bandwidths for
m11(·) and modify that bandwidth (via the relevant sample size) for the other three cases.
For testing, given the results in Parmeter et al. (2009) that suggest employing CV in
nonparametric tests causes size distortions, we use plug-in bandwidths to calculate the
relevant test statistics.

3.1.2 Bootstrap Inference

Asymptotic results for nonparametric statistics are rarely used directly for inference. Es-
timating any of the above variances is a nontrivial task that involves several bandwidth
choices, with the challenge that there hardly exist bandwidth selectors for such variance
estimators. Even if you succeed to estimate these expressions, in practice, the suppressed
remainder terms may still play a role, not to mention the slow convergence to normality. In
cases such as ours, bootstrapping is a widely accepted remedy. It is well known (Mammen,
1992), for nonparametric methods, that the naive bootstrap is insufficient (yields inconsis-
tent estimators for most situations), while the wild bootstrap works. Abadie and Imbens
(2008) confirmed the failure of naive bootstrap for kNN matching. Politis (2013) emphasized
the superiority of nonparametric (which can be seen as a particular version of the wild)
bootstrap for model-free prediction. This is common practice in matching and conditional
DiD (Sperlich, 2013). Bodory et al. (2020) studied explicitly the consistency of the wild
bootstrap for nonparametric matching estimators.

The distinction between a wild and nonparametric bootstrap often reduces to the
question of how many moments are asymptotically matched. While asymptotic theory tells
us that, the higher the bootstrap residuals match the moments of the original residuals,
the more efficient the procedure, Davidson and Flachaire (2008) argue that you need quite
large samples before this finding becomes effective. Following their recommendations, we
propose a simple version (modifications towards higher-moment matching bootstraps are
straightforward), first for continuous responses, then for discrete ones.
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Given consistent nonparametric estimators for mdt(x), our residuals are given by

ûit = Yit − m̂dt(Xit) , i = 1, ..., ndt, d = 0, 1, t = 0, 1. (3.2)

Generate B bootstrap samples {Y ∗b
it , (Dit = d), t, Xit}ndt

i=1, b = 1, ..., B,2 for all groups

Y ∗b
it = m̂dt(Xit) + u∗b

it , d = 0, 1, t = 0, 1, i = 1, ..., ndt, (3.3)

where u∗b
it can be generated by ûit multiplied by an independent N(0, 1) variable (which

performed best in our simulations).3 From these B tuples of the four samples, we calculate
B estimators of T̂ T

∗b

x , T̂ T
∗b

a and/or T̂ T
∗b

b , which are calculated as described in Section 2.3.1,
except that m̂dt(·) is replaced with their bootstrap analogues m̂∗b

dt(·). From the B bootstrap
estimates T̂ T

∗b

z (for z = x, a, b), we obtain the bootstrap variance and confidence interval
estimates for the corresponding T̂ T z.

For discrete Y , several scenarios are feasible. If you use the local-constant version and
face binary responses, as we do in our application, you can generate bootstrap replicates

Y ∗b
it : = 11{m̂dt(Xit) > vb} , b = 1, ..., B (3.4)

with randomly drawn vb ∼ U [0, 1]. In our application, we received essentially the same
standard errors when applying bootstrap versions of (3.3) and (3.4). In more complex
cases, a link function is recommended. Then a semiparametric bootstrap can be applied
to draw from the conditional distribution defined by this link: define a distribution with
Y |X = x ∼ G{η(x)}; estimate the index function η(x) and its conditional expectation by
local-likelihood, and draw the bootstrap responses Y ∗

it from G{η̂(Xit)}.
There exists an extensive literature on how to adapt a wild bootstrap to situations

with correlated errors, say by given clusters (inside the groups) or autocorrelation (in panel
data). Most of these modifications can be applied to our bootstrap in a straightforward
way. For nonparametric analysis of continuous covariates, Faraway (1990) and Härdle
and Marron (1991) noticed that these bootstrap procedures based on nonparametric or
semiparametric models do not capture the smoothing bias well. This can lead to size
distortions in nonparametric testing based on a wild or nonparametric bootstrap. They
proposed to fix this problem by using different bandwidths for estimation (bandwidth h)
and bootstrap sample generation (call this bandwidth g), see Sperlich (2014) for details.
The same occurs for the smoothed bootstrap of Cao-Abad and González-Manteiga (1993).
A less commonly used alternative is to explicitly correct for the smoothing bias, may it be
by bias estimates (Xia, 1998; Cornillon et al., 2017), bias reduction (for instance via higher

2As typically people look at confidence bands or intervals with α = 0.05 or 0.10, we recommend to take
a large number B (with 100 being an absolute minimum). We have not derived a theoretical justification for
particular recommendations.

3Some favor the Rademacher distribution, though in a quite different context.
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order kernels or higher order local polynomials) or a (double) bootstrap (Hall and Horowitz,
2013). Neumann and Polzehl (1998) show that asymptotically, using local-polynomials with
undersmoothing h works as well, as the bias converges faster.

For testing with continuous covariates, we suggest an approach following the discussion
of Vilar and Vilar (2012). Specifically, we search for the bandwidth over the set of scaled
covariates X for each regression problem and apply then the largest h in all steps.4 This
is simple and works well in simulations. Regarding our choice of g (for generating the
bootstrap residuals), our procedure is preferable in practice to the common recommendation
of multiplying h by a fixed constant (e.g., g = 1.5h). While it is clear in simulations that
you can find a constant such that the latter procedure performs better, in practice you
don’t know this constant a priori. As we only have discrete data in our application, we will
not face the choice of g.

3.1.3 Sampling Weights

In our application, sample weights are used. This can be implemented in the most generic
setting of our estimator m̂dt(x). Our objective function for a given conditional expectation
can be written as

ndt∑
i=1

wiû
2
i K(Xi, x, h, λ) =

ndt∑
i=1

wi[Yi − m̂dt(x)]2K(Xi, x, h, λ),

where wi is the sample weight for observation i. This leads to the (weighted) estimator

m̂dt(x) =
∑n

i=1 YiwiK(Xi, x, h, λ)∑n
i=1 wiK(Xi, x, h, λ) ,

which, unfortunately, is not common in canned statistical packages. One way to implement
this is via the npksum tool in the np package in R (Hayfield and Racine, 2008). This allows
us to calculate

n∑
i=1

YiwiK(Xi, x, h, λ) and/or
n∑

i=1
wiK(Xi, x, h, λ)

and taking the ratio of these two sums gives us the local-constant estimator. Certainly, the
same approach works with other weighting schemes researchers may want to include (e.g.,
for scenario predictions).

3.1.4 Parametric and Semiparametric Alternatives

It is feasible to use parametric or semiparametric methods with our approach. We could
replace the conditional expectations with parametric or semiparametric versions. However,

4This includes the bootstrap samples (i.e., estimating conditional means for pooled data under the null,
and generating residuals under the alternative). See Section 2.4.4.
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we still suggest that our method be first. Our methods do not have to be the last step,
instead, they can guide the practitioner to find appropriate specifications and avoid wrong
conclusions based on results which are strongly model-dependent. A compromise could be
the use of splines which simplify modeling, but still provide important flexibility.5

3.2 Implementation

In this section we suggest an algorithm and highlight three procedure codes which can
implement many of the methods discussed above.

3.2.1 Algorithm

We have produced three procedures that can be implemented in R (http://www.r-project.org).
There are three separate procedures, namely covariate/scale selection, evaluating bias
stability, and estimation. To employ the full set of procedures here we will need at least
three periods of data. We need at least two periods prior to treatment to check the bias
stability condition and at least one period after treatment to estimate the conditional and
unconditional TT.

If there are more than two periods after treatment (say, t = 1 and 2), the code will
collapse the additional periods (i.e., the TT estimate will be interpreted as an average of
the TT over all post periods). Similarly, if there are more than two periods prior to the
treatment (say, t = −1 and −2), the code will collapse the additional periods.

The algorithm is as follows:

1 Use both intuition and statistical analysis to suggest sets of potential confounders. It
is important to pick the set of confounders that minimize the bias stability condition
Assumption I. Possible suggestions include plotting the densities separately between
groups and either visually confirming or statistically confirming the difference between
densities.

2 Suggest possible strictly monotone transformations of the outcome variable Y . Two
common cases in the continuous setting are in levels and logs.6

3 For each combination of transformations of Y and sets XS of covariates for X, use
plug-in bandwidths to calculate the conditional expectation mdt(·) for the setting d = 1
and t = 0. Use the scale factors from this setting to select the plug-in bandwidths for

5Typically splines do not include all possible interactions among the covariates. This would be analogous
to an additively separable nonparametric (kernel estimated) model, which would not be subject to the p ≤ 3
restriction.

6In our application, Y is binary and hence is our only suggestion.
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the conditional expectations for the other three cases (d = 1, t = −1, d = 0, t = 0 and
d = 0, t = −1).7

4 For each combination listed in the previous step, calculate the bias stability condition
in Assumption I, but for the period before treatment started. The combination that
makes this condition closest to zero is our candidate set.

5 Run the bias stability test for the set XS identified in step (4). If you reject the null,
consider adding additional confounders and running steps (3) and (4) again.

6 For the combination of (transformation of) Y and (set of covariates) XS that mini-
mizes the bias stability condition, use a CV routine to best estimate the conditional
expectation mdt(·) for the setting d = 1 and t = 1. Use the scale factors from this
setting to select the bandwidths for the conditional expectations for the other three
cases (d = 1, t = 0, d = 0, t = 1 and d = 0, t = 0).8

7 Estimate each of the four conditional expectations and evaluate each TT of interest.

8 Obtain the standard errors via the bootstrap procedure outlined in Section 3.1.2 and
perform the tests of interest.

3.2.2 Procedure Code

In this section, we detail three procedures that can be implemented in the programming
language R. We decided to present them as three separate procedures as it may be desirable
to disentangle them in an application. Note that the first two procedures require two
periods of data prior to the treatment whereas the third only requires one period before and
one after. The first procedure bsc.choice(), identifies the set of covariates including all
confounders, and the scale of the outcome variable that minimize the objective function(s).
Different from above, in the following of this Section we will speak of ‘confounders’ instead
of ‘covariates’ simply to emphasize that this is very different from standard variable selection
in regression. The second procedure bsc.test(), checks if the bias stability condition is
violated via the test statistic Tt. The final procedure npdid.estimation(), estimates the

7For the continuous founders, we suggest using the Silverman (1986) rule-of-thumb and for the discrete
confounders we suggest using the methods discussed in Chu et al. (2015). These were designed for density
estimation, but avoid the large computational burden with multiple combinations and CV (in the fifth step,
we use CV to obtain more accurate estimates).

8For continuous variables, hj = cj σ̂xj n−1/(4+q), where cj is the scale factor and σ̂xj is the sample
standard deviation of the jth continuous covariate. For discrete variables, λj = cjn−2/(4+q), where cj is the
scale factor for the jth discrete covariate.
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treatment effect T̂ T b.9 All R code is available from the authors’ upon request.10

Description of the Function bsc.choice()

The main purpose of this function, bsc.choice(), is to suggest a set of confounders amongst
a set of potential confounders.11 The bsc.choice() function can be called with,

bsc.choice(y,sx,d,t,w,ycont)
The function has six main arguments where the first four are obligatory. These are

y: The outcome variable, which is a n × 1 matrix. It contains the outcome variable
for each individual in each time period. It may be discrete or continuous.

sx: The sets of potential confounders, which is a list. It requires multiple data frames,
each consisting of sets of potential confounders. The number of rows of each confounder
must be of dimension n. The number of confounders and types of variables (discrete
or continuous) can vary with each data frame. It is feasible to have some of the
confounders in competing sets.

d: The treatment status. This is a binary variable of dimension n × 1.

t: The time period. This is a discrete variable which must be equal to zero in the
period immediately before the treatment was administered.12 This variable is of
dimension n × 1.

w: These are the sample weights. It must be a n × 1 matrix. If no sample weights are
needed, it should be set equal to a column of ones.

ycont: This asks whether or not the outcome variable (y) is continuous. If set equal
to “continuous", it will evaluate the function for both the level and the log of the
outcome variable.13

The function consists of several steps. It first determines the type of variable (ordered,
factor or continuous) from each data frame. It scales each continuous variable by its
respective standard deviation. It then calculates plug-in bandwidths for each regressor

9It is feasible to extract T̂ T a from the code for T̂ T b.
10We are currently in development of both R and Stata packages to perform all of the results in the

application, including heterogenous TT estimates. The present versions of the packages are available at
https://olegbadunenko.github.io/didnp/ and https://olegbadunenko.github.io/didnp/stata, respectively.

11It also checks for the level versus the log of Y if the outcome variable is continuous.
12We only consider treatment occurring in a single period. Extensions to treatments conducted in different

time periods for different individuals is left for future research.
13Note that you must ensure that the outcome variable can be logged. Also, it is feasible to include

alternative transformations of the outcome variable within the section of the code as desired.
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type. For continuous variables it uses the Silverman (1986) bandwidth and for the discrete
variables it uses the plug-in bandwidths from Chu et al. (2015). To equate the amount of
smoothing across each functional, it calculates the scale factors for the treatment group in
period 0 and then adjusts for the rate of convergence of the other three groups (treated
before period 0, control in period 0 and control before period 0). Once these are obtained
for each set of confounders, recall (2.8), i.e.

1
n1•

∑
i:Di•=1

{
m1t(xi•) − m0t(xi•) − m1(t−1)(xi•) + m0(t−1)(xi•)

}2

we divide by the relative variance of the outcome variable as well as penalize for the number
of confounders. This is calculated for each set of confounders and scale of the outcome
variable. The procedure then determines the set which minimize (2.8).

The function then returns six objects. Each object of interest can be called via $:

y: The outcome variable associated with the smallest value for (2.8).

x: The set of confounders that minimize the objective function.14

bsc.store: The value produced for each set of confounders of (2.8).

min.bsc.store: The minimum value of produced amongst the set of confounders of
(2.8).

qt: The number of discrete regressors in the chosen set of confounders.

qc: The number of continuous regressors in the chosen set of confounders (should be
three or less).

At this point, the user could take the resulting outcome variable and set of confounders
and conduct the bsc.test() with those variables.

Description of the Function bsc.test()

The main purpose of this function, bsc.test(), is to check if there is a violation of the
bias stability condition.15 The bsc.test() function can be called with,

bsc.test(y,x,d,t,w,nb)
The function has six main arguments where the first four are obligatory. These are

14The function scales each of the continuous variables to have variance 1. This improves estimation in
practice and does not impact the ranking of sets of confounders nor does it impact the estimated treatment
effect.

15It is feasible to modify this procedure to conduct the significance test.
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y: The outcome variable, which is a n × 1 matrix. It contains the outcome variable
for each individual in each time period. It may be discrete or continuous.

x: The set of confounders, which is a data frame. This is a n × q matrix where q refers
to the total number of confounders.

d: The treatment status. This is a binary variable of dimension n × 1.

t: The time period. This is a discrete variable which must be equal to zero in the period
immediately before the treatment was administered. This variable is of dimension
n × 1.

w: These are the sample weights. It must be a n × 1 matrix. If no sample weights are
needed, it should be set equal to a column of ones.

nb: The number of bootstrap replications. This must be an integer value. If not
specified, 399 bootstrap replications will be run.

The function consists of several steps. It first determines the type of variable (ordered,
factor or continuous) from the data frame. It then calculates plug-in bandwidths for each
regressor type. For continuous variables it uses the Silverman (1986) bandwidth and for
the discrete variables it uses the plug-in bandwidths from Chu et al. (2015). To equate the
amount of smoothing across each functional, it calculates the scale factors for the treatment
group in period 0 and then adjusts for the rate of convergence of the other three groups
(treated before period 0, control in period 0 and control before period 0). Once this is
obtained for the set of confounders, Tt is calculated. A bootstrap16 is used to approximate
the sampling distribution of the test statistic.

The function then returns four objects. The first object, a figure, will automatically be
produced. The remaining three objects of interest can be called via $:

bsc.stat: The value produced by Tt.

sd.bsc: The standard deviation (standard error of the test statistic) of the boot-
strapped estimates of the test statistic.

p.value: The p-value associated with the test statistic. This is calculated as the
percentage of bootstrapped test statistics which are larger than the original test
statistic.

16The code can automatically detect if the outcome variable is binary. If so, then a bootstrap procedure
which ensures the bootstrap outcome is binary, is applied.
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The figure plots the estimated density of the bootstrapped test statistics17 along with the
value of the test statistic itself as a vertical line. If the vertical line does not appear present
in the figure, it is likely far to the right which would suggest rejecting the null hypothesis
(i.e., a p-value near zero).

Description of the Function npdid.estimation()

The final function, npdid.estimation(), is designed to estimate the treatment effect and
its standard error. The npdid.estimation() function can be called with,

npdid.estimation(y,x,d,t,w,nb)
The function has six main arguments where the first four are obligatory. These are

y: The outcome variable, which is a n × 1 matrix. It contains the outcome variable
for each individual in each time period. It may be discrete or continuous.

x: The set of confounders, which is a data frame. This is a n × q matrix where q refers
to the total number of confounders.

d: The treatment status. This is a binary variable of dimension n × 1.

t: The time period. This is a discrete variable which must be equal to zero in the period
immediately before the treatment was administered. This variable is of dimension
n × 1.

w: These are the sample weights. It must be a n × 1 matrix. If no sample weights are
needed, it should be set equal to a column of ones.

nb: The number of bootstrap replications. This must be an integer value. If not
specified, 399 bootstrap replications will be run.

The function consists of several steps. It first determines the type of variable (ordered,
factor or continuous) from the data frame. It then calculates plug-in bandwidths for each
regressor type to be used as starting values for the cross-validation function. Again, for
continuous variables it uses the Silverman (1986) bandwidth and for the discrete variables
it uses the plug-in bandwidths from Chu et al. (2015). To equate the amount of smoothing
across each functional, it calculates the scale factors for the treatment group in period 1
and then adjusts for the rate of convergence of the other three groups (treated before period
0, control in period 0 and control before period 0). The LSCV procedure defined in (3.1) is
minimized using the bobyqa() function in the minqa package in R. We calculate the scale
factors from the CV function for the treatment group in period 1 and then adjust for the

17The Sheather and Jones (1991) bandwidth is used to produce this kernel density. It is available in the
base package of R via density(x,bw="sj").
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rate of convergence of the other three groups (treated in period 0, control in period 1 and
control in period 0).

We are interested in both, the effect heterogeneity (i.e., estimating first TTx) and the
average treatment effect (here we will integrate the TTx only over the second cohort of
treated giving us T̂ T a). A bootstrap18 is used to produce the sampling distribution of the
TT. We use the sample standard deviation of the bootstrapped values of TT as the standard
error of the treatment effect.

The function then returns six objects. Each object of interest can be called via $:

bw11: The cross-validated bandwidths for the treatment group in period 1.

bw10: The convergence rate adjusted bandwidths for the treatment group in period 0.

bw01: The convergence rate adjusted bandwidths for the control group in period 1.

bw00: The convergence rate adjusted bandwidths for the control group in period 0.

atet: The estimated value of the TT

sd.atet: The estimated standard error of the TT

These three functions together can be used to reproduce nonparametric results in the
paper. They can be used to replicate the simulations or the empirical application. The R
files that we used to construct any of these results are also available upon request.

3.3 Simulations

In this section, we study the finite sample performances, and show our theoretical results
hold with simulated data. We focus our attention on three sets of simulations. First, we
see how well our method picks the correct set of covariates (i.e., confounders). Second, we
examine the nominal size and power of our test for violation of the bias stability condition.
Finally, we examine the performance of our estimate of the TT and its variance.

We begin with this basic data generating process and specifically mention where it is
modified below. We keep it simple and only look at two covariates, no time correlation,
continuous Y , and no interactions. We generate our two covariates via Xit ∼ U [0, 2]2, and
our random errors via ϵit ∼ N(0, 1.5) (c.f. E in our causality graphs), and uit ∼ N(0, σ2

u)
for t = −1, 0, 1. We obtain the treatment status and outcome values as

Dit = 11{0.75Xit,1 − 0.5X2
it,2 > ϵit} (3.5)

Yit = 1 + t(2 + Xit,1 + X2
it,2) + Dit + Dit11{t ≥ 1} + uit (3.6)

18The code can automatically detect if the outcome variable is binary. If so, then a bootstrap procedure
which ensures the bootstrap outcome is binary, is applied.
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where the treatment effect on the treated is the coefficient on the interaction term (i.e.,
TT = 1.0) in (3.6).19 In (3.6) this starts from period t = 1 onward. We consider samples of
size n = Σ1

t=−1nt = Σ1
d=0Σ1

t=−1ndt = 100, 200, 400 and 800 where n is the total number of
observations of all individuals in all time periods, nt is the number of individuals in time
period t (3 total time periods are observed) and ndt is the number of individuals in group d

in time period t. We are creating a repeated cross-section whereby each sample produces
roughly an equal number of treated and controlled observations.

While we choose n = 100, 200, 400 and 800, the effective sample sizes are much smaller.
The last two columns of numbers in Table 3.1 give the average sample size (to the nearest
integer) for n10 (the number of observations we sum over in our criterion function), and
the smallest sample size over all ndt (d ∈ {0, 1}, t ∈ {−1, 0, 1}).20 For example, for n =
Σ1

t=−1nt = Σ1
d=0Σ1

t=−1ndt = 100, the average number of observations in n10 = 18 and
min(ndt) = 12. This is unheard of in nonparametric kernel estimation, yet our methods
perform admirably.

Given that we only consider continuous outcome variables and covariates, we use
Gaussian kernel functions. Adding additional discrete covariates or having a binary outcome
variable does not significantly impact the results of the simulations. In each exercise, we use
999 Monte Carlo simulations. For cases that require bootstrap replications, we use B = 999
bootstrap replications.

We do not consider linear parametric models as our data are generated nonlinearly and
standard linear models will produce biased estimates here (i.e., stickman comparison models).
Even if we had correctly specified parametric models, we would expect similar results from
both approaches. Given our theoretical results and potential parametric functional form
misspecification, we feel the comparison is unnecessary in this simulated setting.21 By a
linear parametric model we refer to a model in which X enters linearly. Equivalences to
linear models without X were considered by others (Lechner, 2011; Frölich and Sperlich,
2019). We do not consider the two-way fixed effects model or its problems (Chaisemartin
and D’Haultfoeuille, 2020) as this generally refers to potentially unbalanced panel data
regression with a purely linear specification, fixed effects for all subjects or groups and time
periods, facing more than two time points in which it is not required that controls were
observed over the entire period nor that all included treated subjects were also observed
before treatment. In sum, it allows for many violations which renders a comparison beyond
the scope of this paper. We plan to address this more formally in future research.

19While our simulations have to be generated by a specific parametric model, our nonparametric model
does not include a treatment times post-time variable as our estimation strategy focuses on four conditional
expectations.

20The effective sample sizes are nearly identical in the remaining tables.
21We compare our methods to linear parametric methods in our application.
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3.3.1 Choice of the Confounder Set

To see if our method appropriately picks the correct set of covariates, we generate our data
as in (3.6). However, we also generate irrelevant covariates (from the same distributions
as our relevant covariates). In each case, we include both the correct covariates and then
add either all irrelevant or some irrelevant covariates to determine if we can identify the
correct set. We present the results for moderate (σ2

u = 1.0) and a low signal-to-noise ratio
(σ2

u = 2.0). In each case, all our (three separately simulated) irrelevant covariates come from
a uniform distribution from zero to two. In other words, we generate each Xit,j ∼ U [0, 2]
separately for j = 1, 2, . . . , 5. We consider the following sets:

1. S1,2 = {Xit,1, Xit,2},

2. S1,3 = {Xit,1, Xit,3},

3. S2,4 = {Xit,2, Xit,4},

4. S3,4 = {Xit,3, Xit,4},

5. S4,5 = {Xit,4, Xit,5},

6. S1,3,4 = {Xit,1, Xit,3, Xit,4},

7. S2,4,5 = {Xit,2, Xit,4, Xit,5},

8. S1,2,3 = {Xit,1, Xit,2, Xit,3},

9. S1,2,4 = {Xit,1, Xit,2, Xit,4},

10. S1,2,3,4 = {Xit,1, Xit,2, Xit,3, Xit,4}, and

11. S1,2,3,4,5 = {Xit,1, Xit,2, Xit,3, Xit,4, Xit,5}.

We consider the following comparisons against S1,2 (i.e., the correct set of covariates): versus
S1,3 and S2,4, versus S3,4 and S4,5, versus S1,3,4 and S2,4,5, versus S1,2,3 and S1,2,4, and finally,
versus S1,2,3,4 and S1,2,3,4,5. The first comparison is the hardest as each time just one relevant
covariate was replaced. We do not know in advance which is the second most difficult, as
this depends on how well the penalty factor

(
2(k + p)2 + 2(k + p)

)
/ (n1• − (k + p)) does

its job.
If we choose at random, then the fraction correctly specified should be approximately

1/3 and if we choose correctly each time, then it should be 1. Table 3.1 gives the results of
our simulations. The top panel is for the moderate signal-to-noise ratio and the lower panel
is for the low signal-to-noise ratio. As expected, we perform better when the signal-to-noise
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ratio is higher. It is clear that larger sample sizes are needed when more noise is present in
the model.

The first case represents the hardest one. With n = 100 (i.e., some ndt just about 10), we
are roughly at or above random choice. For n > 100, it improves even for low signal-to-noise
ratios.22 If we move to the second column, the procedure already works for n = 100, and
quite rapidly improves for increasing samples or higher signal-to-noise ratios.

The third column of numbers add an additional irrelevant covariate. Here, with help
of the penalty factor, we easily distinguish the correct set of covariates from those with
one relevant covariate. For a more fair comparison, we include both relevant covariates and
one irrelevant covariate in the fourth column of numbers. Here we actually do better. Even
for sample sizes as small as n = 100, we correctly predict over 0.97 for both the low and
moderate signal-to-noise settings. Finally, we add two and three irrelevant covariates to the
two correct covariates in the fifth column. These fractions are near one in every setting.

In summary, we were generally able to identify the correct set of covariates. In practice,
we expect a mix of relevant and irrelevant covariates in each set. Given that we have very
small sample sizes here, we have faith in practice that our method will choose the correct
set of covariates with standard sample sizes in the applied literature.

22We continued to raise the sample size to see if these fractions tended towards 1. When doubling the
sample size, this occurred by n = 3200 (n10 ≈ 575) for σ2

u = 2.0.
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3.3.2 Testing

Here we check the performance of our second primary contribution, nonparametric tests for
the credibility of bias stability, joint significance of heterogeneous effects, and homogeneous
treatment effects, respectively. Recall that studying the unconditional TT is much easier
(Section 3.1.2). We conduct our simulations along the problem of studying the bias stability
(‘parallel path’) condition.23 We generate our data as in (3.6) to determine the size of the
test. To determine the power, we change the indicator function to 11 {t ≥ 0} in (3.6) as
this will generate a situation in which the bias stability condition is violated. We again use
n = Σ1

t=−1nt = Σ1
d=0Σ1

t=−1ndt = 100, 200, 400, and 800 total observations and estimate the
size (and power) of the test at each of the common (arbitrary) values (1, 5, and 10%).

Inference with nonparametric estimation methods can be notoriously difficult. Using
the asymptotic variances of tests are often useless and bootstrap procedures can bring large
improvements. That being said, it is common to oversmooth with such tests when using the
bootstrap. As we mentioned in the main document, we recommend a common approach of
oversmoothing when calculating the residuals which are used in the bootstrap procedure
(Vilar and Vilar, 2012). We calculate the test statistic (T0) as outlined above, but calculate
the residuals using the bandwidth procedure of Vilar and Vilar (2012).24 In short, we obtain
the bootstrap residuals by adding the fitted values (using the standard bandwidth) to the
resampled residuals (using the larger bandwidth). Using the smaller bandwidth leads to too
little variation in the data (and would result in an improperly sized test).

23We focus our attention on this particular test statistic as it is the most difficult and maybe most
interesting one.

24We tried the generic approach of multiplying the bandwidth by a constant (Härdle and Marron, 1991,
pp. 791). Specifically, we set g = 1.5h, where h is obtained from plug-in methods (only necessary for
continuous variables). The size of the test for this approach is better than what we present. As the multiple
(1.5) is arbitrary, we preferred the automated approach in Vilar and Vilar (2012). The results are available
upon request.
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The results for both the size and power of our test (T0) can be found in Table 3.2. The
test seems to be correctly sized starting with relatively small samples (say n > 200). As
expected, the size of the test improves with the number of observations and is better in
the moderate signal-to-noise ratio. This is impressive given the history of nonparametric
kernel based tests. We do feel the need to mention that the oversmoothing here is necessary.
When we perform the test without a bandwidth g, the test is not properly sized (even for
relatively large samples).

As for the power of the test (again in Table 3.2), the power is relatively low for small
sample sizes, but improves quickly as n increases. For example, when σ2

u = 1.0, by the time
n = 800, the percent of time the test correctly rejects the null is in excess of 85% at the
1% level and in excess of 97% at the 5 and 10% levels. The results for σ2

u = 2.0 are also
strong, but require about twice as many observations when compared to the moderate
signal-to-noise ratio.

In conclusion, the test is easy to use and works well. Power decreases for increasing
dimensions (especially when bias reducing techniques are needed: p > 3). We also studied
in detail the effect when the true data generating process deviates from the bootstrap
generating process in different ways. While certainly the p-value estimate is affected, the
test generally detected violations of the parallel path.

3.3.3 Treatment Effect Estimator

Finally, we move to estimates of the TT and its variance. Our estimators are consistent, but
we provide a brief set of results here for TTb to confirm (i.e., integrate TTx over all treated
individuals).25 While consistency should not be in question, the ability of nonparametric
estimators to produce correct results for the variance are less reliable. The asymptotic
results are not useful for finite sample sizes and so we employ our bootstrap procedure
outlined in Section 3.1.2. We do not require a bandwidth g and use h for both estimation
and in our bootstrap.26

It should be emphasized again, with TTb, we are integrating over all treated individuals.
In other words, we are summing over n11 and n10. What this implies is that we are using
roughly twice the number of observations as compared to the previous two sub-sections.
The results for TTa would use roughly half as many observations (i.e., solely n11).

Table 3.3 gives our simulation results. We choose a moderate (upper panel) and a low
(lower panel) signal-to-noise ratio. In each case, the finite sample bias exists and tends

25The results for each of our treatment effect estimators are similar. Simulations for T Ta or T Tx (at a
given x) are available upon request.

26We again use plug-in methods here, but note that the bias is much smaller for cross-validated bandwidths
as plug-in methods tend to oversmooth. Specifically, for the cross-validated bandwidths, by the time n = 400
(n11 = 71, n10 = 84), our average (over the 999 simulations) biases are zero to two decimal places.
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towards zero as n increases. Again, larger biases are functions of using plug-in bandwidths
which tend to oversmooth (LSCV bandwidths lead to much smaller average biases).27

The average mean square error (AMSE) also tends towards zero (evidence that our
estimator is consistent). As expected, the moderate signal-to-noise ratio results in smaller
AMSE values for any given sample size (it does not significantly impact the bias). The third
column of numbers gives the average variance of the TTb estimator over each of the 999
simulations. Recall that we calculate the variance in each of those 999 simulations via 999
bootstrap replications. We are able to see the variance of the estimator converges as the
sample size increases.

The performance of our estimator is impressive given its nonparametric nature. Overall,
our simulations suggest that our covariate selector, test and estimator are reliable and match
our asymptotic developments. Next, we discuss the use of these methods with empirical
data.

27We advocate for using cross-validated bandwidths in practice when estimating the TT. The sign of the
bias is not random, but if it is negative can only be deduced from the average over the linear combinations
of individual biases Bdt(x, λ, h), which in turn depends on the particular bandwidth choices, true densities
and functions. Importantly, it is minor in size and rapidly converges to zero.
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4 Application: Human Capital Responses to DACA
On June 18th, 2020, the Supreme Court of the United States ruled that the president
could not immediately end DACA. As any attempts to strike down the program will
need additional study, it is important to carefully examine the evidence both for and
against the program. One potential benefit is that the rules in place to qualify for DACA
require schooling. Additional units of education should lead to increased human capital and
benefits to society. Kuka et al. (2020) examine human capital responses to the availability
of the DACA program and (using a DiD approach) find that DACA significantly increased
high school attendance and completion rates. They further find positive, but insignificant,
impacts on college attendance. Even though they had only discrete covariates which they
all decomposed to dummies, the results still rely on restrictive parametric assumptions and
hence are subject to misspecification bias and potential inconsistency, cf. our discussion
on (allegedly) saturated models in Appendix B.1. Moreover, we show that for their set of
covariates, there are issues with the underlying identification assumption.

4.1 Data

The data come directly from Kuka et al. (2020) and we only discuss them briefly1. Kuka
et al. (2020) use the Integrated Public Use Microdata Series (IPUMS) American Community
Survey (ACS) (Ruggles et al., 2018) over the period 2005–2015. They focus on (a sample of)
immigrant youth aged 14 to 22 during the time of the survey such that they arrived on US
soil by the age of 10 in 2007. The sample from 14–18 is used to study high school attendance,
while the sample from age 19–22 is used to study high school completion (including those
who graduated from high school as well as those who earned a passing grade on the General
Educational Development test) and post-secondary attendance (three different binary left-
hand-side variables). Recall that with a binary outcome, linear DiD estimators do not
guarantee the predicted outcome lies between zero and one. Our nonparametric estimator
guarantees this support condition.

The ACS includes a large amount of demographic variables which are exploited by Kuka
et al. (2020) to attempt to make Assumption I hold. Specifically, they account for fixed
individual characteristics by including controls for sex, year of immigration and birth region.
Given the nature of parametric models, they also include interactive dummies for age of
immigration-by-eligibility and age-by-eligibility fixed effects.2 They include state-by-year,
race-by-year and age-by-year fixed effects. Our nonparametric methodology does not require
arbitrary interactions (even if based on sound logic), but accounts for them automatically.

1The data are freely available at doi.org/10.1257/pol.20180352.
2In econometrics, those fixed effects are used to control for unobserved time-invariant heterogeneity

which may be correlated with the error term.
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We have seven different potential variables for X in each regression. Each are discretely
measured. The potential unordered variables include sex, race, birthplace and current U.S.
state, while the potential ordered variables include age, year, year of immigration and age
at time of immigration.3

It is important to note that the ACS is a representative sample of those living in the
United States, regardless of their citizenship or legal status. The Census Bureau encourages
responses to ACS and is not allowed to share the personal information with other government
agencies, and it also makes the survey available in Spanish.

Kuka et al. (2020) note that their measure of eligibility is measured with noise as it
includes non-citizens who may have green cards or may be temporary visa holders (i.e., not
eligible for DACA). The estimated effect of DACA is likely a “scaled-down” estimate of
the true intent-to-treat effect. Their Appendix B estimates that their estimated effects are
likely to underestimate the true effect by roughly 45 percent.

4.2 Average Treatment Effects

The replicated parametric results can be found in Tables 4.1 and 4.2. These correspond to
their model

Yidast = α0 + α1Eligibled + α2 (Eligibled × Postt) + α3Xid

+γst + γrt + γat + uidast,

where Y is the outcome of interest (in school, completed high school or some college) for
individual i, who has eligibility status d, who is aged a and living in state s at time t.
Given the sample selection (age and year of immigration), Eligible is a dummy variable
that equals 1 if the immigrant is not a citizen and zero otherwise. The variable Post is
a dummy variable that equals 1 on or after 2012. Xid includes the dummies for sex, year
of immigration and birth region, while each of the γ terms represent the interactive fixed
effects. The treatment effect estimate is captured by α2. It is interpreted as the average
effect of DACA after 2012 (the analysis covers four “treated” years: 2012–2015).

Parametric estimation is performed via least-squares dummy-variable techniques and
requires a relatively large memory to construct (not to mention invert) such a data matrix.
The authors cluster their standard errors at the state level. The nonparametric estimates
(TTb) are listed below their parametric counterparts. Estimation of our treatment effect is
described above (Section 2.3), we use cross-validated bandwidths and use our bootstrap
procedure (with B = 999) to calculate our standard errors.

3In the Hispanic sample and in the high-take up sample, we exclude the variable for race and region of
origin. In the cases where we only examine 19 year olds, we remove the variable for age.
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The final three values associated with each sample in Tables 4.1 and 4.2 are the sample
size, the mean of the outcome variable and the p-value associated with our bias stability
test. The latter shows mixed results.4 In Table 4.1, we firmly reject the null that the BSC
(“parallel path”) holds in our sample for 14-18 year olds, but are unable to reject it for each
case for 19-22 year olds. Table 4.2 shows four cases where we fail to reject the null and five
cases where we reject the null. As we are simply looking to replicate the results of their paper,
we proceed as if we were unable to reject the null hypothesis in each scenario.5 We therefore
should be careful about the interpretation of each treatment effect as identification is in
question for several of them. In practice, we would suggest that more potential covariates
be tracked down in order to satisfy the identification condition.

4.2.1 School Attendance

The results for school attendance are found in Table 4.1. For individuals aged 14-18, the
parametric models show positive and significant estimates for each grouping (all, Hispanic
and high take-up sample). These results suggest that DACA led to an increase in school
attendance of 1.2 percentage points among all immigrants with 2.2 and 2.9 percentage point
increases for Hispanic and high take-up sample immigrants.

If we look to the nonparametric results for those aged 14-18, they are larger (albeit
not statistically larger). The nonparametric point estimates are 0.022, 0.033 and 0.034 and
the standard errors are similar (0.005, 0.008 and 0.008 versus 0.007, 0.012 and 0.012 for
the parametric and nonparametric models, respectively). This bodes well for the results
in Kuka et al. (2020). The nonparametric models relax restrictive assumptions and the
conclusions are statistically similar. Ignoring other potential issues, these results should be
considered to be robust.

4As all variables are discrete, there is no need to oversmooth bandwidths in the bootstrap routine.
5The usual caveat applies: a failure to reject the null hypothesis is not an acceptance of the null.
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Table 4.1 also gives the results for 19-22 year olds. While this group was primarily used
to examine later schooling outcomes, it is interesting to see these impacts. The parametric
model gives positive, but insignificant estimates. The nonparametric model gives negative
and significant estimates for each sample. There is substantial evidence in the literature to
suggest that the impact of DACA on college-age enrollment is in fact negative. Hsin and
Ortega (2018) found that DACA increased dropout rates by 7.3% in 2018. Amuedo-Dorantes
and Antman (2017) found that DACA reduced the probability of school enrollment of
eligible higher-educated individuals as it increased the likelihood of employment of men. The
lack of authorization led individuals to enroll in school when working legally was not feasible.
While the differences in point estimates with respect to 14-18 year olds is interesting, the
ability of our method to identify the negative impact on college-aged individuals shows the
downsides of relying on parametric assumptions.

4.2.2 High School Completion and College Enrollment

The effects of DACA on high school completion and college enrollment can be found in
Table 4.2. The first three columns represent the effect on high school completion (GED
or diploma) for all immigrants, Hispanic immigrants and immigrants from high take-up
countries, respectively. These results are broken down by age (19, 19-22 and 23-30). Similarly,
the fourth through sixth columns give the impact of DACA on the completion of some
college (more than 12 years of education completed) for each of the groups (all, Hispanic,
and high take-up) for each age group.

Beginning with the parametric high school completion regressions, completion rates
for all 19 year old immigrants increased by 4.6 percentage points. The effects for 19 year
old Hispanics and immigrants from high take-up countries experienced increases of 6.5
and 8.5 percentage points, respectively. The impact for 19-22 year olds is smaller: 3.8, 5.9
and 6.4 percentage point increases for all, Hispanic and high take-up sample immigrants,
respectively. For those individuals 23-30 years old, the impacts are either marginally
significant or insignificant. The impact appears to be stronger for younger individuals.
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The nonparametric results are equally interesting. Here we find the impact of DACA
on high school completion to be larger than that found in Kuka et al. (2020). For 19 year
olds, the nonparametric model suggests that the increase was 9.6 percentage points for all
immigrants, 12.8 percentage points for Hispanic immigrants and 15.2 percentage points for
immigrants from high take-up countries. That being said, these point estimates are not
statistically different from their corresponding parametric counterparts.

While the point estimates for 19 year olds were larger for the nonparametric model,
those same results for 19-22 and 23-30 years olds are often smaller in the nonparametric
model. The parametric model appears to underestimate the impact of DACA for 19 year
olds, but exaggerates it for older individuals.

A similar patter occurs for the impact of DACA on some college. The fourth through
sixth columns of Table 4.2 show higher impacts of DACA in the nonparametric setting
(except for the high take-up sample) for 19 and 19-22 year olds and lower impacts of DACA
for 23-30 year olds. However, the majority of point estimates here are insignificant. While
the nonparametric model removes restrictive assumptions, it is unable to conclude that
DACA has a significant impact on college enrollment.

In summary, our average effects were able to confirm the parametric result of increased
schooling in individuals aged 14-18. This result is important as we can have more faith
in the impact of such policies on high school aged students. As for completion of high
school, the impact was stronger than previously thought for individuals aged 19-22. This
result suggests the program is more effective than previously thought. However, high school
completion is defined as earning a GED or a diploma and we are unable to disentangle
the two.6 At the same time, our nonparametric model was able to accurately uncover the
negative impact of DACA on school attendance of college aged immigrants, which the
parametric model could not (positive and insignificant).

4.3 Heterogeneous Treatment Effects

While our replication results above are interesting, our methods are far more general. We
are able to look at TTx and in this section will delve more into heterogeneous treatment
effects. As the number of possible groupings is seemingly endless, we will focus our attention
on the first result (the effect of DACA on school attendance for 14-18 year olds). In what
follows, we will look at the average effect for male vs female non-citizen immigrants, the
average effect by race, the average effect by age and the average effect by age immigrated.
Additional results are easily tabulated via minor changes to our code.

We present our main findings in Figures 4.1-4.4. In each figure we plot the average
treatment effect on the treated for each group TTx along with confidence bounds. For

6Pope (2016) finds suggestive evidence that DACA pushed individuals to obtain their GED certificate.

55



simplicity, these symmetric bounds are calculated via the average effect plus or minus two
times the (bootstrapped) standard error of the average treatment effect estimate (alternative
methods produced similar results). We used 999 bootstrapped resamples for the calculation
of each standard error.

0.
00

0.
02

0.
04

0.
06

Sex

TT
x

Male Female

Figure 4.1: Effect of DACA on school attendance (age 14-18) by sex

The results via sex are striking. Figure 4.1 show a positive and significant effect for
male non-citizen immigrants (TTmale = 0.038, se (TTmale) = 0.011), but an insignificant
effect for female non-citizen immigrants (TTfemale = 0.004, se (TTfemale) = 0.010). The
average treatment effect for the full population (TT = 0.022, se (TT ) = 0.008) is roughly
half the effect between the two groups (we note a modest increase in the standard errors
as the respective group sample sizes are smaller than that of the full sample). Although
the 2σ̂−confidence intervals overlap a bit, there does appear to be a much larger impact of
DACA on male relative to female non-citizen immigrants.

The results by race are also very interesting. Figure 4.2 shows positive and significant
average treatment effects for Hispanic (TTHispanic = 0.030, se (TTHispanic) = 0.022), White
(TTW hite = 0.009, se (TTW hite) = 0.004) and Black (TTBlack = 0.037, se (TTBlack) = 0.007)
non-citizen immigrants. Those for Asian and Other non-citizen immigrants are insignificant.
The largest percentage of treated observations are Hispanic (37, 659), but they also have
the most variation in their estimates. It seems likely that this result should be examined
deeper. One lesson learned from the previous figure is that perhaps it should be further
broken down by sex or perhaps by country of origin.
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Figure 4.2: Effect of DACA on school attendance (age 14-18) by race

The results broken down by age are intuitive. Figure 4.3 shows that the effect increases
with age. For 14 and 15 year olds, the effects are insignificant (TT14 = −0.012, se (TT14) =
0.008 and TT15 = −0.009, se (TT15) = 0.006). For 16, 17 and 18 year olds, the effects
are significant and monotonically increasing with age (TT15 = 0.019, se (TT16) = 0.006,
TT17 = 0.033, se (TT17) = 0.009) and TT18 = 0.082, se (TT18) = 0.019)). For most US
states, schooling is compulsory until the age of 16, 17 or 18. This likely explains the
insignificant impact for ages 14 and 15 and the increasing average effect by age afterward
(for 16-18). We note here that the effect for 18 year olds is the largest we have seen in this
paper. Most students graduate high school at age 18 and perhaps DACA encourages them
to complete the final step.

The final set of results we consider here are looking at the average effects for the age at
which the individual immigrated. Recall that eligibility required that they arrived on US
soil by the age of 10 (in 2007). We therefore looked at the average effect with respect to the
age immigrated (0 to 10). These results can be found in Figure 4.4. With the exception of
age 4 (which we have no explanation for), all the results are insignificant until age 8. The
average effects for non-citizens who immigrated at the age of 8, 9 or 10 are not statistically
or economically different from one another, but they are each significantly different from
zero. Without further knowledge it is unclear why this may be true, but we conjecture that
it may have to do with English language skills (it is common knowledge that it is more
difficult to learn new languages with age).
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Figure 4.3: Effect of DACA on school attendance (age 14-18) by age

While these results shed new light, they also create more questions. We argue that
looking at average treatment effects on the treated for the entire population likely masks
many important results. While this is not a controversial statement, we believe that our
methodology is desirable for this type of analysis.

4.4 Caveats and Directions for Future Research

Before this application is to be taken seriously for policy analysis, a few caveats remain.
First, we want to emphasize that the bias stability condition was rejected for several of our
cases. We should look into whether we can find additional confounders or different samples
for which this is not the case. Second, the authors of the previous study treat 2012 as the
year in which treatment occurred. This may or may not be true. While DACA was signed
in 2012 and was put in place in 2012, the first set of recipients did not become aware until
later in the year (the Department of Homeland Security first began accepting applications
in August of 2012). We are unable to determine when the individual filled out their Census
form (this is unknown even to the Census as they have private firms collect and transmit
this data). It is likely the case that this adds additional noise, but could also impact the
point estimates.7 Third, we treated all previous years and post years equally. There is no

7It is also true that military veterans were eligible for DACA. This omission, however, likely played no
role for younger individuals.
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Figure 4.4: Effect of DACA on school attendance (age 14-18) by age immigrated

reason that need be the case.
So where do we go from here? We believe that it would make sense to examine the

sample more carefully. We should search for additional confounders so that we fail to reject
the bias stability condition. We should also look at effects for more homogeneous groups.
For example, we may want to look at Hispanic males who immigrated to the US after
the age of 7. Given the root-n consistency of our TTx estimator, we should get relatively
trustworthy results for these types of breakdowns.
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A Proofs

This appendix includes the main proofs of the paper. It begins with the asymptotics for
the test statistics and ends with giving the influence functions for our treatment effect
estimators.

A.1 Asymptotics of the Test Statistics

Here we give all the main steps of the technical proof. For calculation of the bias and
variance, we partly follow Vilar-Fernández and González-Manteiga (2004) and Dette and
Neumeyer (2001). They consider the problem of nonparametric comparisons of regression
curves, say H0 : m1 = m2 = · · · = mK for mk(x) = E[Y |X = x], k = 1, . . . , K which
correspond to different populations. The former considered this for autocorrelated data,
while the latter considered this for independent data, but with different statistics. We
decompose

T1 =
1∑

d,t=0
Γdt + 2

∑
mix(dt,ks)

(−1)d+k+t+sΓdt,ks + oP

( 1
n11

√
h

)
, (A.1)

where for Wdt(xit) := 1
ndthW{(xit − x)/h}/fdt(x)

Γdt =
ndt∑

Di=d:i=1

ndt∑
Dj=d:j=1

∫
Wdt(xit)Wdt(xjt)dF11(x) uitujt

Γdt,ks =
ndt∑

Di=d:i=1

nks∑
Dj=k:j=1

∫
Wdt(xit)Wks(xjs)dF11(x) uitujs,

where we first interchanged the sums, and then approximated the average 1
n11

∑n11
Di=1:i=1

by
∫

dF11(x). Due to the independence of the uit, an assumption we relaxed for balanced
panels (for repeated cross sections it is less problematic), the expectation of Γdt,ks is zero,
and so is the expectation of all mixed terms of Γdt. Taking the expectation of the remaining∑ndt

Di=d:i=1
∫

W 2
dt(xit)dF11(x) u2

it leads us (after some calculations that are standard in kernel
regression) to the stated bias.

To obtain the variance, we need to consider the expectation of the square (A.1), but
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suppressing in Γdt the
∑ndt

Di=d:i=1
∫

W 2
dt(xit)dF11(x) u2

it. That is, we consider the Γdt,ks and

Γ′
dt = 2

ndt∑
Di=d:i=1

∑
Dj=d:j<i

∫
Wdt(xit)Wdt(xjt)dF11(x) uitujt.

The independence of these terms follows from the independence of the uit (as we consider
cohorts of independent observations), so that we can calculate the variance of each term
separately. From the related literature on nonparametric testing, it is well known that the
variance of the Γ′

dt gives the first part of V/(n2
11h) with the sum over the four groups. The

errors uit belonging to group (dt) are independent not only within this group, but also from
those of any other group (ks); all additive terms in Γdt,ks are independent from each other.
Taking expectation, the second part of V/(n2

11h) containing all mixtures mix(dt, ks) is

E[Γ2
dt,ks]

= 1
n2

dtn
2
ksh4 E

 ndt∑
Di=d:i=1

nks∑
Dj=k:j=1

{∫
Wdt(xit)Wks(xjs)dF11(x)

}2
u2

itu
2
js


= 1

n2
dtn

2
ksh2 E

[
ndt∑

Di=d:i=1

nks∑
Dj=k:j=1

(
K ∗ K

(
xit − xjs

h

))2
×

f11(xit)f11(xjs)u2
itu

2
js

f2
dt(xit)f2

ks(xjs)

]

= 1
ndtnksh2 E

[(
W ∗ W

(
xit − xjs

h

))2
×

f11(xit)f11(xjs)σ2
dt(xit)σ2

ks(xjs)
f2

dt(xit)f2
ks(xjs)

]
,

which gives us the second part of the variance. The central limit theorem follows directly
from Vilar-Fernández and González-Manteiga (2004) or Dette and Neumeyer (2001).

A.2 Influence Functions

The influence functions for TTa (for pdt(x) = Pr(D = d, T = t|x)) can be written as

φa(X) = DT
E[DT ] [m11(X) − m10(X) − {m01(X) − m00(X)} − TTa]

+ DT
E[DT ]{Y − m11(X)} − D(1−T )

E[DT ]
p11(X)
p10(X){Y − m10(X)}

− (1−D)T
E[DT ]

p11(X)
p01(X){Y − m01(X)}

+ (1−D)(1−T )
E[DT ]

p11(X)
p00(X){Y − m00(X)} + Rh,n11(X),
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where Rh,n11(X) is a remainder term due to the nonparametric estimates m̂dt(·). Here we
have used that

E[D(1 − T )p11(X)p−1
10 (X)] = E[(1 − D)Tp11(X)p−1

01 (X)]
= E[(1 − D)(1 − T )p11(X)p−1

00 (X)] = E[DT ] .

Noting that n11 = n E[DT ], we immediately get the seemingly simpler (compared to the
one given in Proposition 2.3.2) variance representation

V ar(T̂ T a) = E

[{
{m11(X) − m10(X) − m01(X) + m00(X) − TTa}2

+σ2
11(X) + p11(X)

p10(X)σ2
10(X) + p11(X)

p01(X)σ2
01(X) + p11(X)

p00(X)σ2
00(X)

}
p11(X)
E[DT ]

]
1

n11
.

It is not very hard to see how this changes when we consider TTb. In that case it is helpful
to define the propensity score p(x) = Pr(D = 1|x). Then the influence function for TTb

can be written as

φb(X) = D
E[D] [m11(X) − m10(X) − {m01(X) − m00(X)} − TTb]

+ DT
E[DT ]{Y − m11(X)} − D(1−T )

E[D(1−T )]{Y − m10(X)}

− (1−D)T
E[DT ]

p(X)
1−p(X){Y − m01(X)}

+ (1−D)(1−T )
E[D(1−T )]

p(X)
1−p(X){Y − m00(X)} + Rh,n1(X) .

Consequently, n1 = n11 + n10 replaces n11 and the variance expression becomes

V ar(T̂ T b) = E

[
p(X)
E2[D]{m11(X) − m10(X) − m01(X) + m00(X) − TTb}2

+ p11(X)
E2[DT ]σ

2
11(X) + p10(X)

E2[D(1−T )]σ
2
10(X) + p01(X)

E2[DT ]
p2(X)

{1−p(X)}2 σ2
01(X)+

p00(X)
E2[D(1−T )]

p2(X)
{1−p(X)}2 σ2

00(X)
]

1
n ,

where n = n11 + n10 + n01 + n00. As n1 = n E[D], we see how the convergence rate of
the variance changes from n−1

11 to (n11 + n10)−1. Another difference is that the first term
of the variance is more affected by changing from T̂ T a to T̂ T b than the other four terms.
The reason is that we use essentially the same information for the prior steps, but the final
average from which results the first term of the variance(s) is in case T̂ T b taken over all
members of the treatment group, but for T̂ T a only over the treated observed in t = 1. This
difference can be seen more easily when also for the cohorts we suppose D ⊥ T |X. In that
case the first variance term of T̂ T a differs from that of V ar(T̂ T b) by the factor 1/P (T = 1).
If we have n11 = n10, it means that this term is twice as big for T̂ T a; exactly what intuition
would tell us.
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It should be clear that the expressions simplify if D ⊥ T |X which is unfortunately not
guaranteed by the standard assumption D ⊥ T if X is allowed to vary over time. If X

does not change over time, then X ⊥ T and D ⊥ T |X follows from D ⊥ T . To see how
much this simplifies for instance V ar(T̂ Tb), note that p1t(x) = p(x) Pr(T = t|D = 1, x)
and p0t(x) = {1 − p(x)}Pr(T = t|D = 0, x), E[DT ] = E[D] · E[T ], etc.

Let us consider the special case of the simplified variance for balanced panels with all
covariate values fixed to the observations in t = 0, cf. Corollary 2.3.2 also for notation. It is
not hard to see that it can be written along the above expressions as

1
n1 E

[
p(X)
E[D]{m11(X) − m10(X) − m01(X) + m00(X) − T̃ T}2

+p(X)
E[D]σ

2
1(X) + p2(X)

E[D]{1−p(X)}σ2
0(X)

]
,

which again coincides with the efficiency bounds of Sant’Anna and Zhao (2020).

B Additional Discussion and Final Thoughts

This appendix discusses the alternative of a parametric estimation based on fully saturated
parametric models and how they relate to a nonparametric approach. We also append
concluding remarks, including a discussion about the post-selection inference problem.

B.1 Nonparametric versus Parametric Saturated Models

In the economics literature, there does not appear to be a consistent definition of a
saturated model. It is common to refer to it in order to justify the use of a parametric
model, sometimes without specifying which definition is applied. A popular definition is
that a model is saturated when the number of parameters is equal to the number of data
points. Another popular alternative is to say a saturated model perfectly reproduces all of
the variances, covariances and means of the observed variables. For the regression context,
you may think of an interpolation where the curve or surface passes through each point,
i.e., an exact fitting model. In a (generalized) linear regression model, ‘parameters’ refer to
‘coefficients’. If the covariates can only take a limited number of values, thinking e.g., only
of discrete variables with finite support, such a model can easily become overparametrized,
and a re-definition is needed. We would then call any model saturated if it reproduces the
same fit as the overparametrized one.

In the regression context this is easy to illustrate and understand: imagine a case in
which you have a relatively small number of discrete covariates X that split the sample
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into few groups (cells) of identical information regarding X.1 For regression, compute the
respective response means of Y within each cell and weight them (or their differences
when looking at deviations from the overall mean) with the proportion of each particular
cell in the sample. This means transforming all covariates into complete sets of dummy
variables, and taking all possible interactions of the highest-order between all dummies.
Equivalently, instead of taking all the highest-order interaction terms, you take a set of the
same number of terms out of the full set of dummies and interactions but fulfilling the full
rank condition. It is not hard to see that you can calculate the coefficients of one model out
the coefficients of such an alternative model. Clearly, this is only feasible if (a) all covariates
are discrete, (b) having a finite support, and (c) each cell contains a reasonably large
number of observations. This is actually equivalent to the use of nonparametric regression
with λ = 1 (or, if using W for all covariates, when taking bounded kernels with h close to
zero). In case you have at least one continuous covariate, this strategy cannot provide you
a saturated model. However, even when all X are discrete with a finite support, in practice
you may find several cells that are either empty or contain only a few observations. This
problem increases dramatically with both, the number of covariates and/or their support(s).
Even if the sample is sufficiently large such that this is a minor problem, you then reach
computational limitations due to the size of the projection matrix. This was clearly an issue
in the (parametric replication portion of our) DACA application.

Some people switch to what is sometimes also called a ‘reasonably’ saturated model,
which is even less clearly defined. In practice, its choice is either subjective or random; in
either case it risks approximation bias which to some extent corresponds to the smoothing
bias in nonparametrics. The advantage in nonparametrics is threefold then: (1) this choice
corresponds to the bandwidth choice and can easily be done in a data-driven way, (2) we
understand the risk and know the smoothing bias so that we can deal with it, and (3)
computationally it is essentially always feasible as we do not need to split the categorical
variables into dummies.

The problem of no or few observations in a cell is not just a question of overparametriza-
tion for saturated models, it is thereby related to the question of optimal estimation (or
prediction) in the sense of minimal mean-squared-errors. This is exactly how the nonpara-
metric approach deals with it: looking for the optimal balance between approximation bias
and overparametrization. Consequently, while asymptotically taking a saturated model
(if possible, i.e., only discrete covariates with finite support are included) is equivalent to
nonparametric regression, in finite samples, doing the latter will result in a smaller mean
squared error which is the main objective we should have in this context.2

1For instance, if all information you have is sex assigned at birth (bi-variate) and one of four educational
levels, the sample splits at most in eight cells.

2Remember that your estimate is just a realized random variable; unbiasedness only says that the
average of a many those estimates converges to the true value, but the mean square error approach aims on
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Commonly raised concerns against nonparametrics in this context are the slower rate of
convergence and the curse of dimensionality. We have contested this criticism by emphasizing
that both issues only concern (i) the conditional treatment effects if heterogeneity is explored
over a continuous variable, i.e., if one conditions on a continuous x, and (ii) more generally, if
one included more than three continuous covariates without applying bias reducing methods
like higher-order polynomials. Without denying that criticism, nor weakening our replies,
the above outlined considerations can give us further insight to these issues.

Regarding the convergence rate: unless your parametric model is correctly specified, a
‘reasonably’ saturated model requires you to increase, for increasing sample size, the cells
generated by a continuous covariate (or by a discrete covariate with infinite support). The
optimal rate at which their number increases corresponds to (the inverse of) the bandwidth
rate such that the convergence rate of the estimator in a ‘reasonably’ saturated model
equals the one of nonparametric estimation (as said, in the optimal case, else it converges
slower than the nonparametric one). Even the argument that a parametric approximation
would do equally well if one were only interested in the average is an illusion: suppose x

is a univariate continuous covariate, and we are indeed only interested in the population
or sample average of ∂E[Y |x = xi]/∂x. Thinking of E[Y |x = xi] = βixi, then the β of a
linear model is the average of the βi only if the latter are uncorrelated with xi (which is
a strong assumption), whereas we do not need anything similar for their nonparametric
counterparts ∂E[Y |x = xi]/∂x.

Regarding the curse of dimensionality: for simplicity, suppose all potential covariates
were discrete with each having a support of cardinality K. Then a saturated model with
k covariates has Kk cells. For both parametric and nonparametric models, increasing k

(or K) can become a problem. While it is true that in theory K and k are fixed while the
sample size increases, in practice you face even more problems with parametric estimation
(unless you significantly simplify your model), risking serious approximation biases whose
size and direction you don’t know. Note that for fixed k, K, none of the methods suffer
asymptotically from decreasing rates. Unfortunately, this is only the case for asymptotic
theory.

B.2 Concluding Remarks

We suggest a complete framework for causal analysis (with covariates) via model-free DiD
estimation and testing. We show how to automatically select confounders and the scale of
the outcome variable, estimate TTs, choose bandwidths and construct standard errors and
confidence intervals. We also present model-free testing for significance and heterogeneity

minimizing the distance of your estimate to the true value in probability. Moreover, in the parametric world,
‘unbiasedness’ only means to have such convergence towards the projection of the real world on your model
which can be biased or even meaningless; we know nothing about the distance to the ‘truth’.
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of treatment effects. Importantly, we also provide a bootstrap test for credibility of the
identification assumptions. These results can be used in many common situations and
result in robust analysis. We provide asymptotic theory for both cohorts and panels, for
time-varying and for time constant covariates. The finite sample performance has been
verified by simulation studies under rather complex designs.

We apply our techniques to study the impact of DACA on human capital decisions. We
compare our results to Kuka et al. (2020). If their models were correctly specified, we would
expect that we get similar results. As in their paper, we find a positive (but larger) impact
of DACA on high school attendance and high school completion, but we also find that
they were unable to identify the negative impact of DACA on school enrollment of college
aged individuals. Our findings are closer to what intuition suggests. We also examined
heterogeneity of our treatment effects. These results uncovered several interesting findings
that were masked by looking at average effects. For example, we found that the effects were
positive and significant for males, but insignificantly different from zero for females.

We proposed a selection of scale and covariates along (2.8), (2.9) and (2.10) in the
spirit of the non-testable identifying Assumption I. If we want to address the post-selection
inference problem, we suggested an equivalent to the sample splitting approach (Kuchibhotla
et al., 2022). Alternatively, to account for all variation of the entire statistical analysis, we
could apply an outer bootstrap loop that runs over all steps of the analysis until the final
estimate. In practice this would be extremely costly and may also give unreasonably large
standard errors. In our context (i.e., given the objective of the first steps), it is questionable
if the practitioner should be interested in such variance.
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