Economics 670: Econometrics

Department of Economics, Finance and Legal Studies University of Alabama

Fall 2021

The exam consists of four questions on four pages. Each question is of equal value.

- 1. For $y = X\beta + e$, where X is an $n \times k$ matrix and β is a $k \times 1$ vector, consider the orthogonal projection matrix $M = I_n - P$, where I_n is an identity matrix of dimension n and $P = X(X'X)^{-1}X'$ is the projection matrix. With this information:
 - (a) Show that M is symmetric.
 - (b) Show that M is idempotent.
 - (c) Show that the trace of M is n-k.
 - (d) Show that MX = 0.
 - (e) Show that $My = \hat{e}$.

(a)
$$m' = (I_n - P)' = (I_n - x(xb)^{-1}x')'$$

 $= I_n' - (x(x'x)^{-1}x')'$
 $= I_n - x(x'b)^{-1}x' = I_n - P = M$
(b) $mm = (I_n - P)(I_n - P)$
 $= I_n I_n - I_n P - PI_n + PP$
 $= I_n - P - P + PP$
 $= I_n - P - P + X(x'b)^{-1}x'$
 $= I_n - P - P + P = I_n - P = M$

(c) $tr(m) = tr(I_n - P) = tr(I_n) - tr(P)$ $= n - tr(X(\delta)X)^{-1}(\delta) = n - tr(X(\delta)X)^{-1}(\delta)$ $= n - tr(I_{\epsilon}) = n - te$ (d) $m \times P = (I - x(\delta)X)^{-1}(A) \times P = (I - x(\delta)X)^{-1}(A) \times P = x - x(x(\delta)X)^{-1}(x($

- 2. Consider the model $y = X\beta + e$, where E(e|X) = 0 and $E(ee'|X) = \Omega$, where Ω is an unknown variance-covariance matrix.
 - (a) Derive the OLS estimator $\widehat{\beta}$ of β .
 - (b) Show that the estimator from part (a) is unbiased.
 - (c) Using the result from part (a), propose an estimator $\widehat{\Omega}$ for the variance-covarance matrix Ω .
 - (d) Using the result from part (c), and the objective function $\tilde{e}'\hat{\Omega}^{-1}\tilde{e}$, derive the feasible generalized least squares estimator $\tilde{\beta}$ of β .
 - (e) Show that the estimator from part (d) is unbiased.

(a)
$$\hat{e}'\hat{e} = (y - \kappa \hat{\beta})'(y - \kappa \hat{\beta})$$

 $\frac{\partial}{\partial \beta} = \chi'(y - \kappa \hat{\beta}) = 0$
 $\Rightarrow \chi'y - \kappa'\kappa \hat{\beta} = 0 \Rightarrow \hat{\beta} = (\kappa'\kappa)'\kappa'y$
(b) $\hat{\beta} = (\kappa'\kappa)'\chi'(\kappa\beta + e) = \beta + (\kappa'\kappa)'\kappa'e$
 $E(\hat{\beta} - \beta + \kappa) = (\kappa'\kappa)'\chi'E(e^{\kappa}\kappa) = 0$
(c) $\hat{\lambda} = \hat{e}\hat{e}' = (y - \kappa\hat{\beta})(y + \kappa\hat{\beta})'$
(d) $\hat{e}'(\hat{\beta}')\hat{e}' = (y - \kappa\hat{\beta})'\hat{\lambda}'(y - \kappa\hat{\beta})$
 $\frac{\partial}{\partial \beta} = \chi'\hat{\lambda}'(y - \kappa\hat{\beta}) = 0$
 $\chi'\hat{\lambda}''y - \chi'\hat{\lambda}'\chi'\hat{\beta} = 0$
 $\chi'\hat{\lambda}''y - \chi'\hat{\lambda}'\chi'\hat{\lambda}' = 0$

(e)
$$\beta_{GUS} = (x'\hat{x}^{-1}(x))^{-1}(x'\hat{x}^{-1}(x)\beta_{+}e)$$

 $= \beta + (x'\hat{x}^{-1}(x))^{-1}(x'\hat{x}^{-1}e)$
 $E(\beta_{GUS} - \beta_{1}(x)) = (x'\hat{x}^{-1}(x))^{-1}(x'\hat{x}^{-1}E(e(x)) = 0$

- 3. Consider the model $y = X\beta + e$, where $e|X \sim N(0, \sigma^2 I_n)$. For an i.i.d. random sample of observations from this model,
 - (a) Derive the maximum likelihood estimator of β .
 - (b) Derive the variance of the estimator in part (a).
 - (c) Exploiting the assumption that $e|X \sim N(0, \sigma^2 I_n)$, show that the estimator from part (a) is asymptotically normal.
 - (d) Using large sample theory, show that the estimator from part (a) is consistent.
 - (e) Using large sample theory, show that the estimator from part (a) is asymptotically normal.

(a)
$$\ln \chi(\beta, r^2) = \frac{-2}{2} \ln 2\pi t - \frac{1}{2} \ln r^2 - \frac{1}{2} (y + \beta) (r^2) (y + \beta)$$

$$= -\frac{n}{2} \ln 2\pi t - \frac{n}{2} \ln r^2 - \frac{1}{2} r^2 e' e$$

$$= \frac{1}{2} \times (y + p\beta) = 0$$

$$= \frac{1}{2} \times (y$$

= N(0, +2 (22)-1)

(d) $\beta = (\pi \times \delta)^{-1}(\pi \times y)$ WLLN Sh((0/6) 3 E(80/2))

[h((x'y) B E(xiyi) CMT B = E(vosei) Brayi) = B (e) $\beta - \beta = (\pi \times b)^{-1}(\pi \times e)$ m(B-B) = (toxb) (toxxe) CLT taxe of N(0, 12) vn(β-β) → N(0, 2(66))) which is the one as Brue of 8hings

part as is efficient under

howo steada 8tily

- 4. Consider the model $y = X\beta + e$, where β is a $k \times 1$ vector, E(e|X) = 0 and $V(e|X) = \sigma^2$. Suppose we are interested in the object $\theta = r(\beta) = 1'_k \times \beta = \beta_1 + \beta_2 + \cdots + \beta_k$.
 - (a) What conditions are required to show that $\hat{\theta}$ is a consistent estimator of θ ?
 - (b) What conditions are required to show that $\widehat{\theta}$ is asymptotically normal?
 - (c) What is the variance of the distribution in part (b)? Be specific.
 - (d) Suppose we wish to test the null $H_0: \theta = r(\beta) = \beta_1 + \beta_2 + \cdots + \beta_k = 0$. Write down the Wald statistic for this null.
 - (e) What is the asymptotic distribution of the test statistic from part (d)?

(a) næd \(\hat{\beta} \overline{\beta} \beta \beta \tanàna \ta

(6) in addith to that above, if the fin suffig snorth, the Delth method can show $Va(6-6) \stackrel{d}{\Rightarrow} N(0, Vo)$

(() $V_{B} = R'V_{B}R$ $R = \frac{\partial}{\partial \beta}V(\beta)'$ $V_{B} = \frac{\partial}{\partial \beta}(\delta)$ $R = \frac{\partial}{\partial \beta}(\delta)$

(a) $W = (\hat{G} - 0)'\hat{V}_{0}''(\hat{G} - 0)$ $= (\hat{\beta}_{1} + \cdots + \hat{\beta}_{1e})'\hat{R}'\hat{V}_{0}''\hat{R}'(\hat{\beta}_{1} + \cdots + \hat{\beta}_{1e})$ $= (\hat{\beta}_{1} + \cdots + \hat{\beta}_{1e})^{2} / 1_{1e}'\hat{A}^{2}(\omega \omega)' 1_{1e} \wedge \chi_{1}^{2}$