Economics 471: Introductory Econometrics Department of Economics, Finance and Legal Studies University of Alabama Spring 2022 Midterm II The exam consists of three questions on four pages. Each question is of equal value. 1. Consider a random sample of data $\{x_{1i}, x_{2i}, y_i\}_{i=1}^n$ and the model $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i$, where $E(u_i|x_{1i}, x_{2i}) = 0$. We know that an estimator of β_1 is $$\widehat{\beta}_1 = \frac{\sum_{i=1}^n \widehat{r}_{1i} y_i}{\sum_{i=1}^n \widehat{r}_{1i}^2}$$ and the conditional variance of that estimator is $$\widehat{V}\left(\widehat{\beta}_{1}|x_{1i},x_{2i}\right) = \frac{\widehat{\sigma}^{2}}{\sum_{i=1}^{n}\left(x_{1i}-\bar{x}_{1}\right)^{2}\left(1-R_{1}^{2}\right)}.$$ With this information, answer the following questions: - (a) What model is used to estimate r_{1i} ? - (b) For the model in part (a), derive the estimator of the intercept parameter. - (c) For the model in part (a), derive the estimator of the slope parameter. - (d) Write down the estimator for the error variance term $\hat{\sigma}^2$. - (e) Suppose x_1 and x_2 are uncorrelated, what does the conditional variance simplify to (be specific)? (a) $$x_{ii} = x_{0} + x_{2} \times x_{2i} + x_{1i}$$ (b) $X_{ix_{1}}^{2} = X_{1} \times x_{2i} + x_{2i} \times x_{2i}$ $\Rightarrow f_{0} = x_{1} - f_{0} \times x_{2}$ (c) $\Rightarrow f_{0} = X_{1} - f_{0} \times x_{2}$ (d) $f_{0}^{2} = \frac{1}{n-3} \frac{1}{N_{12}} (x_{1i} - x_{2}) (x_{1i} - x_{2})^{2}$ (d) $f_{0}^{2} = \frac{1}{n-3} \frac{1}{N_{12}} (x_{1i} - x_{2})^{2} (x_{1i} - x_{2})^{2}$ (e) $f_{0}^{2} = \frac{1}{n-3} \frac{1}{N_{12}} (x_{1i} - x_{2})^{2} = (x_{1i$ - 2. Consider a random sample of data $\{x_{1i}, x_{2i}, x_{3i}, y_i\}_{i=1}^n$ and the model $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i$, where $E(u_i|x_{1i}, x_{2i}, x_{3i}) = 0$. With this information, answer the following questions: - (a) Suppose we wish to test $H_0: \beta_3 = 0$. Write down the test statistic for this null. - (b) Suppose σ^2 is known, what is the distribution of the test statistic from part (a)? - (c) Suppose σ^2 is unknown, what is the distribution of the test statistic from part (a)? - (d) Suppose we wish to test $H_0: \beta_2 = \beta_3 = 0$. Write down the test statistic for this null. - (e) Suppose σ^2 is unknown, what is the distribution of the test statistic from part (d)? (a) bo: B3 =0 t = B3 -0 Sc (B3) (b) N(0(1) (c) they or P²vusi (e) Fz, n-y 3. Consider the gretl output below relating the number of cigarettes smoked per day (cigs) to the individual's level of education (educ), the price of cigarettes (cigpric), their age (age) and the square of their age (agesq) and income their (income). With the output from these two models, answer the questions on the following page: Model 1: OLS, using observations 1–807 Dependent variable: cigs | | Coefficien | ıt | Std. | Error | t-ratio | p-value | |---------------|------------|-------|----------|------------|------------|----------| | const | 14.7432 | | 6.54268 | | 2.253 | 0.0245 | | educ | -0.376440 | | 0.169769 | | -2.217 | 0.0269 | | cigpric | -0.0320155 | 5 | 0.1019 | 009 | -0.3142 | 0.7535 | | age | -0.0413708 | 3 | 0.0287 | 973 | -1.437 | 0.1512 | | income | 0.0001178 | 319 | 5.5979 | 7e-005 | 2.105 | 0.0356 | | Mean depen | dent var | 8.68 | 6493 | S.D. dep | endent var | 13.72152 | | Sum squared | d resid | 1501 | 157.2 | S.E. of re | egression | 13.68314 | | R^2 | | 0.01 | 0520 | Adjusted | R^2 | 0.005585 | | F(4,802) | | 2.13 | 1747 | P-value(| F) | 0.075114 | | Log-likelihoo | od - | -3253 | 3.821 | Akaike c | riterion | 6517.641 | | Schwarz crit | erion | 6541 | 108 | Hannan- | -Quinn | 6526.652 | Model 2: OLS, using observations 1–807 Dependent variable: cigs | Coefficient | | Std. Error | | t-ratio | p-value | |--------------|---|--|--|--|--| | 1.87774 | | 6.87287 | | 0.2732 | 0.7848 | | -0.504037 | | 0.168659 | | -2.988 | 0.0029 | | -0.0345002 | | 0.100216 | | -0.3443 | 0.7307 | | 0.796047 | | 0.159838 | | 4.980 | 0.0000 | | 4.13093e-005 | | 5.68945e-005 | | 0.7261 | 0.4680 | | -0.00927067 | | 0.001 | 74150 | -5.323 | 0.0000 | | dent var | 8.686493 | | S.D. depe | endent var | 13.72152 | | resid | 145026.3 | | S.E. of regression | | 13.45573 | | R^2 | | 1331 | Adjusted \mathbb{R}^2 | | 0.038365 | | | 7.431 | L220 | P-value(1 | F) | 7.94e-07 | | od – | -3239.792 | | Akaike criterion | | 6491.584 | | erion | 6519.744 | | Hannan-Quinn | | 6502.397 | | | 1.87774
-0.504037
-0.0345002
0.796047
4.13093e-0
-0.0092706
dent var
resid | 1.87774
-0.504037
-0.0345002
0.796047
4.13093e-005
-0.00927067
dent var 8.686
resid 1450
0.044
7.431
d -3239 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.87774 6.87287 -0.504037 0.168659 -0.0345002 0.100216 0.796047 0.159838 4.13093e-005 5.68945e-005 -0.00927067 0.00174150 dent var 8.686493 S.D. depermentation of the company com | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | - (a) Write down the marginal effect of age from model 1. - (b) Test the null hypothesis that the coefficient on age is zero in model 1. - (c) Write down the marginal effect of age in model 2. - (d) Test the null hypothesis that the number of cigarettes smoked per day is a linear function of age. - (e) Using at least two measures of goodness-of-fit, which model is preferable? (6) $$f_0: \beta_{\text{age}} = 0$$ $$f = \frac{-0.0413 - 0}{0.0288} = -1.437 < 2$$ $$\Rightarrow \text{fill by cyaf}$$