Economics 471: Introductory Econometrics

Department of Economics, Finance and Legal Studies

University of Alabama

Fall 2022

The exam consists of three questions on three pages. Each question is of equal value.

- 1. Consider the model $y_i = \alpha + u_i$, $i = 1, 2, ..., n_s$
 - (a) Using method of moments, derive the estimator of α .
 - (b) Using least-squares, derive the estimator of α .
 - (c) Show that the estimator you obtained in (a) or (b) is an unbiased estimator of α .
 - (d) Suppose the true data generating process is $y_i = \alpha + \beta x_i + u_i$. What is the expected value of your estimator from part (a) or (b) conditional upon x?
 - (e) Considering your result from part (d), under what condition(s) will that estimator be unbiased?

(a)
$$E(u) = 0$$
 $\Rightarrow E(y - x) = 0$ $\Rightarrow \lambda = \frac{1}{2}(x - x) = 0$ $\Rightarrow \lambda = \frac{1}{2}($

(d) $E(26) = E[n = 21/6] = E[n = (x+\beta + 1) = x+\beta = (x+\beta + 1) = x+\beta = (x+\beta = 0)$ (e) binseel un book $\beta = 0$ or $\delta = 0$

2. Consider the model $y_i = \alpha + \beta x_i + u_i$ for i = 1, 2, ..., n and the least-squares parameter estimate of $\hat{\beta}$. Utilizing the proof listed below, answer the following:

$$E\left(\widehat{\beta}|x\right) = E\left(\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}|x\right)$$

$$= E\left(\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})y_{i}}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}|x\right)$$

$$= E\left(\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(\alpha+\beta x_{i}+u_{i})}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}|x\right)$$

$$= E\left(\frac{\alpha\sum_{i=1}^{n}(x_{i}-\bar{x})}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}} + \frac{\beta\sum_{i=1}^{n}(x_{i}-\bar{x})(x_{i}-\bar{x})}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}} + \frac{\sum_{i=1}^{n}u_{i}(x_{i}-\bar{x})}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}|x\right)$$

$$= \beta + E\left(\frac{\sum_{i=1}^{n}u_{i}(x_{i}-\bar{x})}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}|x\right)$$

$$= \beta$$

- (a) Write down the Gauss-Markov Assumptions.
- (b) Using the Gauss-Markov Assumptions you wrote down in part (a), list which assumption(s) are being employed (if any) to move from one line to the next in the proof below.
- (c) What does the proof above prove?
- (d) Formally show how to move from the fourth to fifth equality sign (i.e., show that $\alpha \sum_{i=1}^{n} (x_i \bar{x}) = 0$).
- (e) Formally show how to move from the first to second equality sign (i.e., show that $\sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y}) = \sum_{i=1}^{n} (x_i \bar{x})y_i).$

(b) See above

(c) Bis an unbried extract of B (d) x = (be) - = 0 siffered to show (=, hoi-)=0 note tut in Exi = x by defuition で(も)= でに 一気を = n = - n = (色) 三年(よう)(にも)=三年(はなる)-三月(に大) = きょくいもう・する(やも) = = = y.(6:-5) bearse \$(0; =0)=0 as shun in put (d)

3. Consider the gretl output below for the regression of college GPA (colGPA) on high school GPA (hsGPA). With this information, answer the following:

Model 1: OLS, using observations 1–141 Dependent variable: colGPA

	Coefficient	Std.	Error	t-ratio	p-value	;
const	1.415	0.30	7	4.611	0.0000	
hsGPA	0.482	0.090)	5.371	0.0000	
Mean depender	nt var 3	.056	S.D. de	pendent	var	0.372
Sum squared re	esid 16	16.071 S.I		S.E. of regression		0.340
R^2	0.	.171	Adjuste	ed R^2		0.165
F(1, 139)	28	.845	P-value	(F)	3.	21e-07
Log-likelihood	-46	.962	Akaike	criterion		97.925
Schwarz criterio	on 103	.822	Hannan	-Quinn	1	.00.321

- (a) Interpret the intercept coefficient. Is this result intuitive?
- (b) Interpret the slope coefficient. Is this result intuitive?
- (c) What proportion of the variation in college GPA can be explained by the model?
- (d) What high school GPA will predict a perfect college GPA (i.e., 4.0 college GPA)?
- (e) Test the null that high school GPA is irrelevant in predicting college GPA.

(c) if heapt =0 we expect whethe 1415
(b) if he GPA f by 1 wind, we expect
wolgpa to rice by 0.482
(c)
$$R^2 = 0.171$$
 or 17.1%

(d)
$$\hat{y} = \hat{x} + \hat{\beta} \times 4.0 - 1.41S$$

 $4.0 = 1.41S + 0.482 \times = \times = 0.482$

= 5.363

(e) Ho:
$$\beta = 0$$

Ha: $\beta \neq 0$

$$\xi_{\beta} = \frac{0.482 - 0}{0.090}$$

$$= 5.37 |$$

$$> 2$$

$$\Rightarrow \text{ reject Ho}$$
(ar wok p-who $= 0.000$)