Economics 413: Economic Forecast & Analysis

Department of Economics, Finance and Legal Studies

University of Alabama

Spring 2016

Final – Answers

- 1. For t < t', $Y_t = c + \varepsilon_t + \theta \varepsilon_{t-1}$ and for $t \ge t'$, $Y_t = (c + \psi) + \varepsilon_t + \theta \varepsilon_{t-1}$
 - (a) $E(Y_t) = c$ and $E(Y_t) = (c + \psi)$, respectively
 - (b) $V(Y_t) = (1 + \theta^2) \sigma^2$ for each as the MA(1)'s only differ by means
 - (c) Similary, $\gamma_1 = \theta \sigma^2$ and $\gamma_j = 0$ for all j > 1 for each
 - (d) $h = 1, \widehat{Y}_{t+1|t} = E\left(Y_{t+1}|\Omega_t\right) = E\left[(c+\psi) + \varepsilon_{t+1} + \theta\varepsilon_t|\Omega_t\right] = (c+\psi) + \theta\varepsilon_t \text{ and } \widehat{Y}_{t+h|t} = E\left(Y_{t+h}|\Omega_t\right) = E\left[(c+\psi) + \varepsilon_{t+h} + \theta\varepsilon_{t+h-1}|\Omega_t\right] = (c+\psi) \quad \forall h > 1$
 - (e) $e_{t+1} = Y_{t+1} \hat{Y}_{t+1|t} = \varepsilon_{t+1} \Rightarrow \hat{Y}_{t+1|t} \pm 2\sigma$ and $e_{t+h} = Y_{t+h} \hat{Y}_{t+h|t} = \varepsilon_{t+h} + \theta\varepsilon_{t=h-1} \Rightarrow \hat{Y}_{t+h|t} \pm 2\sigma\sqrt{(1+\theta^2)} \forall h > 1$
- 2. (a) ARIMA(0,1,1)
 - (b) The ACF should have high persistence (lots of spikes near one) and the PACF should have a single large significant spike (near one)
 - (c) The figure should look like a random walk
 - (d) The point estimates should be $y_t + \hat{\theta}\varepsilon_t$ for h = 1, 2, 3
 - (e) The forecast intervals should be $y_t + \hat{\theta}\varepsilon_t \pm 2\hat{\sigma}, y_t + \hat{\theta}\varepsilon_t \pm 2\hat{\sigma}\sqrt{(2+\theta^2)}$ and $y_t + \hat{\theta}\varepsilon_t \pm 2\hat{\sigma}\sqrt{(3+\theta^2)}$, respectively
- 3. (a) $\mathcal{L}(\cdot) = -\frac{T}{2} \ln 2\Pi \frac{T}{2} \ln \sigma^2 \frac{1}{2\sigma^2} \sum_{t=2}^{T} \varepsilon_t^2$, where $\varepsilon_t = y_t c \phi y_{t-1} \theta \varepsilon_{t-1}$ and $\varepsilon_t = y_t c \phi y_{t-1}$ for the true model and your model, respectively
 - (b) The sample ACF and PACF should look like white noise for the true model and the sample ACF and PACF should look like an AR(1) for your model
 - (c) The null in each case is that of no serial correlation. We should fail to reject the null in the true model and reject the null in your model.
 - (d) The point forecasts will be off by $\hat{\theta}\varepsilon_t$ for h=1, but will be the same for h=2 and 3
 - (e) The variance will be too small for your model as compared to the true model and hence the forecast intervals will suggest more confidence than they should

- 4. (a) y, our outcome of interest (growth rate of GDP for Sierra Leone)
 - (b) OLS, but the model is likely estiamted via MLE
 - (c) $t = 1, 2, \dots, T$
 - (d) \widehat{c} coefficient estimate
 - (e) $\widehat{\phi}$ coefficient estimate
 - (f) $\hat{\theta}$ coefficient estimate
 - (g) $se(\hat{c})$ variation in the estimate
 - (h) $se\left(\widehat{\phi}\right)$ variation in the estimate
 - (i) $se\left(\widehat{\theta}\right)$ variation in the estimate

(j)
$$t = (\hat{c} - 0) / se(\hat{c})$$

(k) $t = (\hat{\phi} - 0) / se(\hat{\phi})$
(l) $t = (\hat{\theta} - 0) / se(\hat{\theta})$

- (m) fail to reject null $(H_0: c = 0)$ at 5% level
- (n) fail to reject null $(H_0: \phi = 0)$ at 5% level
- (o) fail to reject null $(H_0: \theta = 0)$ at 5% level
- (p) 1 SSR/SST

$$\begin{aligned} & (\mathbf{q}) \ 1 - \left[SSR/(T-3)\right] / \left[SST/(T-1)\right] \\ & (\mathbf{r}) \ \widehat{\sigma} = \sqrt{\frac{1}{T-3}SSR} \\ & (\mathbf{s}) \ SSR = \sum_{t=1}^{T} \widehat{\varepsilon}_t^2 \\ & (\mathbf{t}) \ \mathcal{L}\left(\cdot\right) = -\frac{T}{2}\ln 2\pi - \frac{T}{2}\ln \widehat{\sigma}^2 - \frac{1}{2\widehat{\sigma}^2}\sum_{t=2}^{T} \widehat{\varepsilon}_t^2 \\ & (\mathbf{u}) \ H_0: \phi = \theta = 0, \ F = \frac{(SSR_R - SSR_U)/3}{SSR_U/(T-3)} \\ & (\mathbf{v}) \ \overline{y} = \frac{1}{T} \sum_{t=1}^{T} y_t \\ & (\mathbf{w}) \ \widehat{\sigma}_y = \sqrt{\frac{1}{T-1}\sum_{t=1}^{T} (y_t - \overline{y})^2} \\ & (\mathbf{x}) \ AIC = T\ln (SSR/T) + 2 (k+1) \\ & (\mathbf{y}) \ SC = T\ln (SSR/T) + (k+1) \end{aligned}$$