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Thus, the covariance between Yyand y,  is constant and time-invariant for all 1
and f~s. Nething of substance is changed by combining the AR(p) and MA(g) mod-
els into the general ARMA(p, ¢) model:
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If the roots of the inverse characteristic equation lie outside of the unit circle
[1e., if the roots of the homogeneous form of (2.22) lie inside the unit circle] and if
the {x,} sequence is stationary, the {,} sequence will be stationary. Consider
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With very little effort, you can convince yourself that the {¥,} sequence satisfies
the three conditions for stationarity. Each of the expressions on the right-hand side of
(2.23) is stationary as long as the roots of | — FaL! are outside the unit circle. Given
that {x,} is stationary, only the roots of the autoregressive portion of (2.22) determine
whether the {y,} sequence is stationary.

5. THE AUTOCORRELATION FUNCTION

The dutocgyariances and autocarrelations of the type found in (2.18) serve as useful
tools in the Box—Jenkins (1976) approach 1o identifying and estimating time-series mod-
els. We illustrate by considering four important examples: the AR(1), AR(2), MA(1), and
ARMA(I, 1) models. For the AR(1) model. y, =gy + a1y, + 5, (2.14) shows
N = 1 - (a))7]
%= oHa) /1 - ()]
Forming the autocorrelations by dividing each % bY 7, we find that z, = L =a),
/= (a2, .., #5= (ayy. For an AR(1) process, a necessary condition for stationarity
is for | @y | < 1. Thus, the plot of p, against s—called the autocorrelation function
(ACF) or correlogram—should converge to zero geometrically if the series is station-
ary. If a; is positive, convergence will be direct, and if ay is negative, the autocorrela-
tions will follow a dampened oscillatory path around zero. The first two graphs on the
left-hand side of Figure 2.2 show the theoretical autocorrelation functions for a; =07
and a; = -0.7 respectively. Here, #y is not shown since its value is necessarily unity.
The Autocorrelation Function of an AR(2) Process

Now consider the more complicated AR(2) process YT AW Y ayy, o+ . We omit an
intercept term (ay) since it has no effect on the ACE. For the second-order process to be
stationary, we know that jt is fccessary to restrict the roots of (1 — ayl — a,L2) 10 be out-
side the unit circle. In Section 4, we derived the autocovariances of an ARMA(2, 1)
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FIGURE 2.2 Theoretical ACF and PACF Patterns

process by use of the method of undetermined coefficients. Now we want to g'ui;mtcd?
i ‘ 10ns iply -order dif-
Iternative technique using the Yole—Walker equations. Multiply U_le secon ¢
b i = =2 and take expectations to form
ference equation by y, fors =0,s=1,5=2, ... 2 )

Eypy, = a1Eyay + axky oy, H E E«’-VI_
Eyyi=aiEy e t @By oy tEgy
Eyyo=a 1By g T @y gy T Eqy

Eyy, :.: A EY Vs T arEy oy, T Egy, (224)



